News
SpaceX’s Pacific rocket recovery fleet heads to sea for Western Block 5 debut
SpaceX drone ship Just Read The Instructions was spotted by Teslarati photographer Pauline Acalin departing Port of Los Angeles on the evening of July 22, while fairing catcher Mr Steven completed final checkouts and full installation of his massive new net, hopefully just days away from the first successful fairing catch. Their call to action, Iridium NEXT-7, is scheduled to launch NET 04:39 PDT/11:39 UTC, July 25th.
Over the course of July, both vessels have been undergoing significant maintenance and upgrades. Mr Steven’s was perhaps the most extreme – his original arm and net apparatus was removed in its entirety and replaced with a massively upgraded system of arms, booms, and a brand new net, well and truly expanding the vessel’s catching area by a factor of four.
With a new net and arm span stretching at least 60 meters by 60 meters, Mr Steven’s improved fairing catching mechanism is now almost the same size as the landing area aboard SpaceX’s two autonomous spaceport drone ships – roughly 200ft x 300ft (60m x 90m). While presumably a pure coincidence, the size parallels apparently necessary to recover two very different components of Falcon 9 – the booster rocket and the payload fairings – is rather satisfying.

A last hurrah?
Intriguingly, ASDS Just Read The Instructions has stoically remained at SpaceX’s Port of San Pedro, CA berth for more than nine months, wholly unused despite the fact that the company has completed four additional missions since its last tasked booster recovery (October 2017, Iridium-3). It’s not a coincidence that all four of those Vandenberg AFB missions featured boosters that had already successfully launched and landed once before – SpaceX made a habit over the last four months of intentionally expending Falcon 9 boosters after their second missions, even when the launch conditions would allow for booster recovery.
This mission will thankfully bring an end to that understandable but still-painful practice, thanks to Iridium-7’s new Block 5 booster, B1048. Many of the months JRTI spent at berth were without the pod thrusters the drone ship needs to keep itself at the proper landing point once at sea, but JRTI departed the port with a full complement of four blue thrusters on the evening of July 22. However, it’s unclear how much SpaceX will need the vessel within just a month or two from today.
- A SpaceX technician works aboard the rain-soaked drone ship Just Read The Instructions, March 2018. (Pauline Acalin)
- More recently, all four thrusters were installed and tested both while berthed and at sea. May 11. (Pauline Acalin)
- JRTI captured conducting sea-trials by photographer Chuck Bennett. (Instagram, @chuckbennett)
At long last, SpaceX’s planned, built, and now-patiently-waiting West Coast landing zone is finally finished, permitted, and in the green to begin supporting Falcon 9 return-to-launch-site (RTLS) recoveries at Vandenberg Air Force Base. Effectively a basic copy of SpaceX’s now well-worn landing zone pair in Cape Canaveral, Florida, the company’s VAFB LZ-1 has been hinted at in two FCC launch permits for launches as early as the first and last weeks of September. Aside from Iridium launches, of which just one will remain after Iridium-7, nearly all of SpaceX’s West Coast launches are for fairly lightweight payloads that should easily allow Falcon 9 RTLS recoveries.
- Iridium-1’s successful and scenic landing on Pacific drone ship JRTI, January 2017. This could be an increasingly rare occurrence in the Pacific, thanks to SpaceX’s new land-based landing zone. (SpaceX)
- SpaceX’s West Coast landing zone is preparing for its debut, currently NET October 6th 2018. (Pauline Acalin/Teslarati)
Environmental conditions mean that JRTI will still be needed regularly for a handful of months (March through June) to avoid disrupting baby seals (pups, technically), but the vessel’s recovery efforts this week may be one of the last ‘off-season’ examples for months or even years to come. On the plus side, RTLS recovery at SpaceX’s VAFB landing zone will be an absolute dream for recovery technicians, as the LZ is directly beside the launch pad and hangar, where recovered Block 5 boosters can likely be refurbished or at least easily packaged and shipped to the Hawthorne factory.
For more sneak peeks and exclusive behind-the-scenes footage of SpaceX’s rocket recovery fleet, including drone ship Just Read The Instructions, be sure to subscribe to our exclusive membership program!
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.




