News
SpaceX’s Pacific rocket recovery fleet heads to sea for Western Block 5 debut
SpaceX drone ship Just Read The Instructions was spotted by Teslarati photographer Pauline Acalin departing Port of Los Angeles on the evening of July 22, while fairing catcher Mr Steven completed final checkouts and full installation of his massive new net, hopefully just days away from the first successful fairing catch. Their call to action, Iridium NEXT-7, is scheduled to launch NET 04:39 PDT/11:39 UTC, July 25th.
Over the course of July, both vessels have been undergoing significant maintenance and upgrades. Mr Steven’s was perhaps the most extreme – his original arm and net apparatus was removed in its entirety and replaced with a massively upgraded system of arms, booms, and a brand new net, well and truly expanding the vessel’s catching area by a factor of four.
With a new net and arm span stretching at least 60 meters by 60 meters, Mr Steven’s improved fairing catching mechanism is now almost the same size as the landing area aboard SpaceX’s two autonomous spaceport drone ships – roughly 200ft x 300ft (60m x 90m). While presumably a pure coincidence, the size parallels apparently necessary to recover two very different components of Falcon 9 – the booster rocket and the payload fairings – is rather satisfying.

A last hurrah?
Intriguingly, ASDS Just Read The Instructions has stoically remained at SpaceX’s Port of San Pedro, CA berth for more than nine months, wholly unused despite the fact that the company has completed four additional missions since its last tasked booster recovery (October 2017, Iridium-3). It’s not a coincidence that all four of those Vandenberg AFB missions featured boosters that had already successfully launched and landed once before – SpaceX made a habit over the last four months of intentionally expending Falcon 9 boosters after their second missions, even when the launch conditions would allow for booster recovery.
This mission will thankfully bring an end to that understandable but still-painful practice, thanks to Iridium-7’s new Block 5 booster, B1048. Many of the months JRTI spent at berth were without the pod thrusters the drone ship needs to keep itself at the proper landing point once at sea, but JRTI departed the port with a full complement of four blue thrusters on the evening of July 22. However, it’s unclear how much SpaceX will need the vessel within just a month or two from today.
- A SpaceX technician works aboard the rain-soaked drone ship Just Read The Instructions, March 2018. (Pauline Acalin)
- More recently, all four thrusters were installed and tested both while berthed and at sea. May 11. (Pauline Acalin)
- JRTI captured conducting sea-trials by photographer Chuck Bennett. (Instagram, @chuckbennett)
At long last, SpaceX’s planned, built, and now-patiently-waiting West Coast landing zone is finally finished, permitted, and in the green to begin supporting Falcon 9 return-to-launch-site (RTLS) recoveries at Vandenberg Air Force Base. Effectively a basic copy of SpaceX’s now well-worn landing zone pair in Cape Canaveral, Florida, the company’s VAFB LZ-1 has been hinted at in two FCC launch permits for launches as early as the first and last weeks of September. Aside from Iridium launches, of which just one will remain after Iridium-7, nearly all of SpaceX’s West Coast launches are for fairly lightweight payloads that should easily allow Falcon 9 RTLS recoveries.
- Iridium-1’s successful and scenic landing on Pacific drone ship JRTI, January 2017. This could be an increasingly rare occurrence in the Pacific, thanks to SpaceX’s new land-based landing zone. (SpaceX)
- SpaceX’s West Coast landing zone is preparing for its debut, currently NET October 6th 2018. (Pauline Acalin/Teslarati)
Environmental conditions mean that JRTI will still be needed regularly for a handful of months (March through June) to avoid disrupting baby seals (pups, technically), but the vessel’s recovery efforts this week may be one of the last ‘off-season’ examples for months or even years to come. On the plus side, RTLS recovery at SpaceX’s VAFB landing zone will be an absolute dream for recovery technicians, as the LZ is directly beside the launch pad and hangar, where recovered Block 5 boosters can likely be refurbished or at least easily packaged and shipped to the Hawthorne factory.
For more sneak peeks and exclusive behind-the-scenes footage of SpaceX’s rocket recovery fleet, including drone ship Just Read The Instructions, be sure to subscribe to our exclusive membership program!
News
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater.
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Two-seat Cybercabs make perfect sense
During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab.
“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said.
Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.
“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said.
Tesla’s robotaxi lineup is already here
The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.
The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.
Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.




