News
SpaceX repairing upgraded Starship prototype after first test
SpaceX workers have been spotted repairing the company’s newest Starship prototype in the days after the rocket’s first partial test.
Starship S24 was transported to SpaceX’s Starbase, Texas orbital launch site (OLS) on May 26th after about two and a half months of assembly, marking the first time SpaceX transported a new Starship prototype to a test stand since August 2021. Less than 24 hours later, after attaching Ship 24 to a new test bay located beside the actual ‘orbital launch mount,’ the Starship prototype came to life and began its first proof test.
Unfortunately, while it’s impossible to judge with certainty without official confirmation, Ship 24 either failed to complete that test or did not make it through unscathed.
Known as an ambient or pneumatic proof test, the main goal is to pressurize a Starship or Super Heavy prototype with nonflammable, ambient-temperature nitrogen gas to ensure that the rocket and all its plumbing are structurally sound and working as expected. A successful test would likely require a prototype to reach and sustain flight pressures – up to 8.5 bar (~125 psi) as of 2020 – without exhibiting any significant leaks or problems.
For a while, Ship 24’s first ambient proof test went about as expected, with lots of small vents from its main liquid oxygen (LOx) and methane (LCH4) tanks. No activity was visible at the ship’s nose, where vents and plumbing attach to a pair of small landing (header) propellant tanks. Ship 24 is the first Starship with an upgraded version of those tanks after SpaceX decided to remove the methane header tank from the main methane tank and relocate it directly under the oxygen header tank, which takes up the tip of Starship’s nose.
After an hour or two of testing, a muffled bursting noise different from previous vents was heard, followed by a quieter ‘whoosh’ more akin to a long vent. At the same time as the loud noise was heard, a good dozen or so of S24’s thousands of heat shield tiles were knocked off the section of the hull between the Starship’s main tanks and nose cone. SpaceX depressurized Ship 24 soon after and within a few hours, workers could be seen extracting a pipe from the ship that appeared to have been bent almost in half.

Three days later, workers were spotted guiding apparent replacement pipes into Ship 24. Altogether, it appears that some small section of Ship 24’s internal piping failed catastrophically after it was pressurized during the vehicle’s first pneumatic proof test, knocking tiles loose and possibly damaging other adjacent plumbing. Given the location of that piping inside Ship 24’s nose section, there’s a nonzero chance that the failure occurred when SpaceX attempted to pressurize the Starship’s new header tanks, which would have started by pressurizing the propellant and gas lines leading to them. That would explain the first muffled burst, the subsequent venting sound that slowly faded to nothing, and the loss of heat shield tiles.
It would also explain why SpaceX decided to leave Starship in place and conduct repairs at the pad. Super Heavy Booster 7, which suffered a dramatic plumbing failure during an early proof test, was moved back to one of Starbase’s covered assembly bays for repairs. Had Ship 24’s incident been severe, it would have likely left the pad as well. The fact that Ship 24 did not move indicates that the failure was fairly minor and contained, only impacting some easily-replaceable plumbing.

Additionally, SpaceX appears to have moved Raptor heat shield components and a missing cover for one of Ship 24’s four flaps to the pad since the incident. On top of the team that has been working all weekend to repair the Starship, other sets of workers have set about closing out Ship 24’s ‘raceway’, which protects hundreds of feet of smaller plumbing and cables and a flight termination system that runs from the top to the bottom of the ship’s tanks; and some have begun preparing to fill gaps in Ship 24’s heat shield. Most of that work can be classified as ‘finishing touches’ and none of it would be prioritized if Ship 24 was not in decent shape.
Still, even minor damage is a setback. Ship 24’s next opportunity for redemption is a 10am to 10pm CDT window on Wednesday, June 1st, with backup windows available on Thursday and Friday.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
