News
SpaceX, Rocket Lab, ULA all have rocket launches planned this weekend
The final weekend of August 2020 is shaping up to be an exciting one in the world of rocket launching. United Launch Alliance (ULA) looks to kick off weekend activities early on Saturday morning with the launch of its Delta IV Heavy rocket carrying a classified satellite payload for the National Reconnaissance Office at 2:04 am EDT (0604 UTC) from Cape Canaveral Air Force Station’s Space Launch Complex 37. Following a successful ULA launch, the weekend’s activity will kick into high gear. Even SpaceX founder and CEO, Elon Musk, agrees that this weekend could be “intense” as stated in a post to his Twitter account Friday, August 28.
Good chance something will slip, but, yeah, Sunday is intense— Elon Musk (@elonmusk) August 28, 2020
According to weather Launch Mission Execution Forecasts provided by the 45th Weather Squadron and confirmed via the company’s Twitter account, SpaceX aims to get two Falcon 9’s launched from the Florida coast just nine hours apart. The company also has a possible flight test of its Starship prototype vehicle on the books from Boca Chica, Texas this weekend. Rocket Lab looks to join in the launching activity with the return to flight mission of its Electron rocket following the wrap-up of its recent in-flight anomaly investigation.
Pending Range availability, targeting back-to-back Falcon 9 launches from Florida on Sunday, August 30—another flight of Starlink from LC-39A at 10:12 a.m. EDT followed by the SAOCOM 1B mission from SLC-40 at 7:18 p.m. EDT pic.twitter.com/uV9MN2Nq2X— SpaceX (@SpaceX) August 28, 2020
SpaceX can only launch this weekend if ULA does too
As SpaceX and ULA both launch from what is referred to as the eastern range – the location of all launches originating from Cape Canaveral Air Force Station or Kennedy Space Center – only one launch provider can be supported at a time by the 45th Space Wing and 45th Weather Squadron which oversee eastern range operations.
As a part of the reservation process ahead of securing a launch date with the eastern range, each launch provider chooses a targeted launch date and secures a number of back-up launch opportunities should a delay occur.
In the case of ULA’s NROL-44 mission, a primary launch opportunity and two back-up opportunities – 24 hours and 48 hours after the initial launch attempt – have been identified. This means that should the Delta IV Heavy suffer another critical issue resulting in a delay during its Saturday, August 29 primary launch attempt, both of SpaceX’s Falcon 9 launch opportunities will be delayed as well.
ULA’s NROL-44 Delta IV Heavy carries a classified satellite payload for the National Reconnaissance Office, a national security division of the United States government. As such, the NROL-44 mission is a matter of national security and takes precedence over both SpaceX’s internal Starlink mission and SAOCOM-1B payload for customer Comisión Nacional de Actividades Espaciales, Argentina’s national space agency.
If the ULA NROL-44 mission is delayed through both back-up launch opportunities SpaceX, presumably, would have to wait until no earlier than Tuesday, September 1 to launch a Falcon 9.
Rocket Lab “I Can’t Believe It’s Not Optical”
While SpaceX will have to wait for ULA’s Delta IV Heavy to clear its pad before attempting either of the planned Falcon 9 launches, Rocket Lab will attempt the return to flight mission of its Electron rocket – the fourteenth flight overall – regardless (weather permitting).
The launch attempt initially scheduled for 11:04pm ET (0304 UTC) Friday, August 28 was rescheduled due to high winds and heavy cloud cover over Launch Complex-1A in Mahia, New Zealand. The next available launch attempt at 11:05 pm ET Sunday, August 30 (0305 UTC Monday, August 31) lines up for Electron to take off just four hours after SpaceX’s SAOCOM-1B mission.
Launch Update: Ground winds remain high at LC-1 tomorrow, so we're now targeting no earlier than Aug 31 UTC for the #ICantBelieveItsNotOptical mission. 🚀🛰️
Mission info https://t.co/zI36drt64x
Launch timing:
ET: 23:05, Aug 30
PT: 20:05, Aug 30
NZT: 15:05, Aug 31 pic.twitter.com/2RRwpxhDSl— Rocket Lab (@RocketLab) August 28, 2020
Following an in-flight anomaly during Electron’s thirteenth mission in July, Rocket Lab was forced to stand down from active launching status to complete a full investigation into the incident. In about a month’s time, Rocket Lab was able to track down and remedy an overheating issue with a single electrical connection on Electron’s second stage.
After receiving clearance from the Federal Aviation Administration to resume operational launches, Rocket Lab has announced that Electron’s fourteenth flight -nicknamed “I Can’t Believe It’s Not Optical” – will be a dedicated mission for Capella Space, a California-based company that utilizes Earth observation data to provide information services.
According to a statement provided by Rocket Lab, the satellite payload called “Sequoia” is “a single 100 kg class microsatellite which will be the first publicly available satellite in the company’s commercial Synthetic Aperture Radar (SAR) constellation.”
A big goal of Rocket Lab’s is to join competitor SpaceX in a class of launchers that regularly recovers and reuses orbital-class boosters. Rocket Lab intends to catch an Electron first-stage booster in-flight once it has been dispensed by catching the falling booster’s parachute canopy with a grappling hook secured to a helicopter.
However, the company has stated that a full-scale demonstration of this effort is targeted for no earlier than the seventeenth mission of Electron currently slated to occur in Fall 2020.
If all proceeds as planned, this weekend could end up as a launchfest of rockets and spaceship prototypes. At the time of publishing, all is proceeding as expected for ULA’s Delta IV Heavy launch attempt and the weather looks good on Saturday, August 29.
ULA has confirmed that the previous issues that caused a launch attempt delay have all been cleared and weather outlook remains at an 80% chance of favorable launching conditions.
The launch attempt will be streamed live and is expected to begin at 1:43 am EDT (0543 UTC) on the company’s website or viewed below.
https://www.youtube.com/watch?v=Fx5GjjCtcgo&feature=youtu.be
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.