News
SpaceX’s Starlink launch debut to orbit dozens of satellites later this month
SpaceX President and COO Gwynne Shotwell has revealed that the company’s first dedicated Starlink launch is scheduled for May 15th and will involve “dozens” of satellites.
Corroborated by several sources, the actual number of Starlink satellites that will be aboard Falcon 9 is hard to believe given that it is a satellite constellation’s first quasi-operational launch. Suffice it to say, if all spacecraft reach orbit in good health, SpaceX will easily become the operator and owner of one of the top five largest commercial satellite constellations in the world with a single launch. Such an unprecedentedly ambitious first step suggests that the perceived practicality of SpaceX’s Starlink ambitions may need to be entirely reframed going forward.
From 0 to 100
In short, it’s hard to exaggerate just how much of a surprise it is to hear that SpaceX’s very first Starlink launch – aside from two prototypes launched in Feb. 2018 – will attempt to place “dozens” of satellites in orbit. Competitor OneWeb, for example, conducted its first launch in February 2019, placing just six satellites in orbit relative to planned future launches with 20-30. To go from 2(ish) to “dozens” in a single step will break all sorts of industry standards/traditions.
Despite the ~15 months that have passed since that first launch, SpaceX’s Starlink team has really only spent the last 6-9 months in a phase of serious mass-production buildup. As of now, the company has no dedicated satellite factory – space in Hawthorne, CA is far too constrained. Instead, the design, production, and assembly of Starlink satellites is being done in 3-4 separate buildings located throughout the Seattle/Redmond area.

SpaceX’s Starlink team has managed to transition almost silently from research and development to serious mass-production (i.e. dozens of satellites) in the space of about half a year. The dozens of spacecraft scheduled to launch on SpaceX’s first dedicated mission – likely weighing 200-300 kg (440-660 lb) each – have also managed to travel from Seattle to Cape Canaveral in the last few months and may now be just a few days away from fairing encapsulation.
To some extent, the first flight-ready batch of “dozens” of satellites are still partial prototypes, likely equivalent to the second round of flight testing mentioned by CEO Elon Musk last year. This group of spacecraft will have no inter-satellite laser (optical) links, a feature that would transform an orbiting Starlink constellation into a vast mesh network. According to FCC filings, the first 75 satellites will be of the partial-prototype variety, followed soon after by the first spacecraft with a more or less finalized design and a full complement of hardware.
If this is just step one…
Meanwhile, Shotwell – speaking at the Satellite 2019 conference – suggested that SpaceX could launch anywhere from two to six dedicated Starlink missions this year, depending on the performance of the first batch. Put a slightly different way, take the “dozens” of satellites she hinted at, multiply that number by 6, and you’ve arrived at the number of spacecraft she believes SpaceX is theoretically capable of producing and delivering in the next 7.5 months.
“Dozens” implies no less than two dozen or a bare minimum of 144 satellites potentially built and launched before the year is out. However, combined with a target orbit of 450 km (280 mi) and a planned drone ship booster recovery more than 620 km (385 mi) downrange, 36, 48, or 60 satellites seem far more likely. Tintin A/B – extremely rough, testbed-like prototypes – were about 400 kg (~900 lb) each.
As an example, SpaceX’s eight Iridium NEXT satellite launches had payloads of more than 10,000 kg (22,000 lb), were launched to an orbit around 630 km (390 mi), and required a upper stage coast and second burn on-orbit. Further, Iridium missions didn’t get the efficiency benefit that Starlink will by launching east along the Earth’s rotational axis. Despite all that, Falcon 9 Block 5 boosters were still able to land less than 250 km (155 mi) downrange after Iridium launches. Crew Dragon’s recent launch debut saw Falcon 9 place the >13,000 kg (28,700 lb) payload into a 200 km (125 mi) orbit with a drone ship landing less than 500 km (310 mi) downrange, much of which was margin to satisfy safety requirements.
Starlink-1’s target orbit is thus a third lower than Iridium NEXT, while its drone ship will be stationed more than 2.5 times further downrange. Combined, SpaceX’s first Starlink payload will likely weigh significantly more than ~13,000 kg and may end up being the heaviest payload the company has yet to launch.

Assuming a payload mass of ~14,000 kg (~31,000 lb) at launch, a worst-case scenario with ~400 kg spacecraft and a 2000 kg dispenser would translate to 30 Starlink satellites. Cut their mass to 300 kg and the dispenser to 1000 kg and that rises to ~45 satellites. Drop even further to 200 kg apiece and a single recoverable Falcon 9 launch could place >60 satellites in orbit.
Of course, this entirely ignores the elephant in the room: the usable volume of SpaceX’s standard Falcon payload fairing. It’s unclear how SpaceX would fit 24 – let alone 60 – high-performance satellites into said fairing without severely constraining their design and capabilities. SpaceX’s solution to this problem will effectively remain unanswered until launch, assuming the company is willing to provide some sort of press release and/or offer a live view of spacecraft deployment on their webcast. Given the cutthroat nature of competition with the likes of OneWeb, Telesat, LeoSat, and others, this is not guaranteed.

At the end of the day, such a major leap into action bodes extremely well for SpaceX’s ability to realize its ambitious Starlink constellation, and do so fast. For those on Earth without reliable internet access or any access at all, the faster Starlink – and competing constellations, for that matter – can be realized, the sooner all of humanity can enjoy the many benefits connectivity can bring. For those that sit under the thumb of monopolistic conglomerates like Comcast and Time Warner Cable, relief will be no less welcome.
Stay tuned as we get closer to Starlink-1’s May 15th launch date. Up next is a static fire of the mission’s Falcon 9 rocket, perhaps just two or three days from now.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Cybertruck
Tesla Cybertruck earns IIHS Top Safety Pick+ award
To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.
The Tesla Cybertruck has achieved the Insurance Institute for Highway Safety’s (IIHS) highest honor, earning a Top Safety Pick+ rating for 2025 models built after April 2025.
The full-size electric pickup truck’s safety rating is partly due to the vehicle’s strong performance in updated crash tests, superior front crash prevention, and effective headlights, among other factors. To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.
Cybertruck’s IIHS rating
As per the IIHS, beginning with 2025 Cybertruck models built after April 2025, changes were made to the front underbody structure and footwell to improve occupant safety in driver-side and passenger-side small overlap front crashes. The moderate overlap front test earned a good rating, and the updated side impact test also received stellar marks.
The Cybertruck’s front crash prevention earned a good rating in pedestrian scenarios, with the standard Collision Avoidance Assist avoiding collisions in day and night tests across child, adult crossing, and parallel paths. Headlights with high-beam assist compensated for limitations, contributing to the top award.
Safest and most autonomous pickup
The Cybertruck is one of only two full-size pickups to receive the IIHS’ Top Safety Pick + rating. It is also the only one equipped with advanced self-driving features via Tesla’s Full Self-Driving (Supervised) system. Thanks to FSD, the Cybertruck can navigate inner city streets and highways on its own with minimal supervision, adding a layer of safety beyond passive crash protection.
Community reactions poured in, with users praising the vehicle’s safety rating amidst skepticism from critics. Tesla itself highlighted this by starting its X post with a short clip of a Cybertruck critic who predicted that the vehicle will likely not pass safety tests. The only question now is, of course, if the vehicle’s Top Safety Pick+ rating from the IIHS will help the Cybertruck improve its sales.
News
Tesla stands to gain from Ford’s decision to ditch large EVs
Tesla is perhaps the biggest beneficiary of Ford’s decision, especially as it will no longer have to deal with the sole pure EV pickup that outsold it from time to time: the F-150 Lightning.
Ford’s recent decision to abandon production of the all-electric Ford F-150 Lightning after the 2025 model year should yield some advantages for Tesla.
The Detroit-based automaker’s pivot away from large EVs and toward hybrids and extended-range EVs that come with a gas generator is proof that sustainable powertrains are easy on paper, but hard in reality.
Tesla is perhaps the biggest beneficiary of Ford’s decision, especially as it will no longer have to deal with the sole pure EV pickup that outsold it from time to time: the F-150 Lightning.
Here’s why:
Reduced Competition in the Electric Pickup Segment
The F-150 Lightning was the Tesla Cybertruck’s primary and direct rival in the full-size electric pickup market in the United States. With Ford’s decision to end pure EV production of its best-selling truck’s electric version and shifting to hybrids/EREVs, the Cybertruck faces significantly less competition.

Credit: Tesla
This could drive more fleet and retail buyers toward the Cybertruck, especially those committed to fully electric vehicles without a gas generator backup.
Strengthened Market Leadership and Brand Perception in Pure EVs
Ford’s pullback from large EVs–citing unprofitability and lack of demand for EVs of that size–highlights the challenges legacy automakers face in scaling profitable battery-electric vehicles.
Tesla, as the established leader with efficient production and vertical integration, benefits from reinforced perception as the most viable and committed pure EV manufacturer.

Credit: Tesla
This can boost consumer confidence in Tesla’s long-term ecosystem over competitors retreating to hybrids. With Ford making this move, it is totally reasonable that some car buyers could be reluctant to buy from other legacy automakers.
Profitability is a key reason companies build cars; they’re businesses, and they’re there to make money.
However, Ford’s new strategy could plant a seed in the head of some who plan to buy from companies like General Motors, Stellantis, or others, who could have second thoughts. With this backtrack in EVs, other things, like less education on these specific vehicles to technicians, could make repairs more costly and tougher to schedule.
Potential Increases in Market Share for Large EVs
Interestingly, this could play right into the hands of Tesla fans who have been asking for the company to make a larger EV, specifically a full-size SUV.
Customers seeking large, high-capability electric trucks or SUVs could now look to Tesla for its Cybertruck or potentially a future vehicle release, which the company has hinted at on several occasions this year.
With Ford reallocating resources away from large pure EVs and taking a $19.5 billion charge, Tesla stands to capture a larger slice of the remaining demand in this segment without a major U.S. competitor aggressively pursuing it.
News
Ford cancels all-electric F-150 Lightning, announces $19.5 billion in charges
“Rather than spending billions more on large EVs that now have no path to profitability, we are allocating that money into higher returning areas, more trucks and van hybrids, extended range electric vehicles, affordable EVs, and entirely new opportunities like energy storage.”
Ford is canceling the all-electric F-150 Lightning and also announced it would take a $19.5 billion charge as it aims to quickly restructure its strategy regarding electrification efforts, a massive blow for the Detroit-based company that was once one of the most gung-ho on transitioning to EVs.
The announcement comes as the writing on the wall seemed to get bolder and more identifiable. Ford was bleeding money in EVs and, although it had a lot of success with the all-electric Lightning, it is aiming to push its efforts elsewhere.
It will also restructure its entire strategy on EVs, and the Lightning is not the only vehicle getting the boot. The T3 pickup, a long-awaited vehicle that was developed in part of a skunkworks program, is also no longer in the company’s plans.
Instead of continuing on with its large EVs, it will now shift its focus to hybrids and “extended-range EVs,” which will have an onboard gasoline engine to increase traveling distance, according to the Wall Street Journal.
“Ford no longer plans to produce select larger electric vehicles where the business case has eroded due to lower-than-expected demand, high costs, and regulatory changes,” the company said in a statement.
🚨 Ford has announced it is discontinuing production of the F-150 Lightning, as it plans to report a charge of $19.5 billion in special items.
The Lightning will still be produced, but instead with a gas generator that will give it over 700 miles of range.
“Ford no longer… pic.twitter.com/ZttZ66SDHL
— TESLARATI (@Teslarati) December 15, 2025
While unfortunate, especially because the Lightning was a fantastic electric truck, Ford is ultimately a business, and a business needs to make money.
Ford has lost $13 billion on its EV business since 2023, and company executives are more than aware that they gave it plenty of time to flourish.
Andrew Frick, President of Ford, said:
“Rather than spending billions more on large EVs that now have no path to profitability, we are allocating that money into higher returning areas, more trucks and van hybrids, extended range electric vehicles, affordable EVs, and entirely new opportunities like energy storage.”
CEO Jim Farley also commented on the decision:
“Instead of plowing billions into the future knowing these large EVs will never make money, we are pivoting.”
Farley also said that the company now knows enough about the U.S. market “where we have a lot more certainty in this second inning.”