News
SpaceX’s Starlink launch debut to orbit dozens of satellites later this month
SpaceX President and COO Gwynne Shotwell has revealed that the company’s first dedicated Starlink launch is scheduled for May 15th and will involve “dozens” of satellites.
Corroborated by several sources, the actual number of Starlink satellites that will be aboard Falcon 9 is hard to believe given that it is a satellite constellation’s first quasi-operational launch. Suffice it to say, if all spacecraft reach orbit in good health, SpaceX will easily become the operator and owner of one of the top five largest commercial satellite constellations in the world with a single launch. Such an unprecedentedly ambitious first step suggests that the perceived practicality of SpaceX’s Starlink ambitions may need to be entirely reframed going forward.
From 0 to 100
In short, it’s hard to exaggerate just how much of a surprise it is to hear that SpaceX’s very first Starlink launch – aside from two prototypes launched in Feb. 2018 – will attempt to place “dozens” of satellites in orbit. Competitor OneWeb, for example, conducted its first launch in February 2019, placing just six satellites in orbit relative to planned future launches with 20-30. To go from 2(ish) to “dozens” in a single step will break all sorts of industry standards/traditions.
Despite the ~15 months that have passed since that first launch, SpaceX’s Starlink team has really only spent the last 6-9 months in a phase of serious mass-production buildup. As of now, the company has no dedicated satellite factory – space in Hawthorne, CA is far too constrained. Instead, the design, production, and assembly of Starlink satellites is being done in 3-4 separate buildings located throughout the Seattle/Redmond area.

SpaceX’s Starlink team has managed to transition almost silently from research and development to serious mass-production (i.e. dozens of satellites) in the space of about half a year. The dozens of spacecraft scheduled to launch on SpaceX’s first dedicated mission – likely weighing 200-300 kg (440-660 lb) each – have also managed to travel from Seattle to Cape Canaveral in the last few months and may now be just a few days away from fairing encapsulation.
To some extent, the first flight-ready batch of “dozens” of satellites are still partial prototypes, likely equivalent to the second round of flight testing mentioned by CEO Elon Musk last year. This group of spacecraft will have no inter-satellite laser (optical) links, a feature that would transform an orbiting Starlink constellation into a vast mesh network. According to FCC filings, the first 75 satellites will be of the partial-prototype variety, followed soon after by the first spacecraft with a more or less finalized design and a full complement of hardware.
If this is just step one…
Meanwhile, Shotwell – speaking at the Satellite 2019 conference – suggested that SpaceX could launch anywhere from two to six dedicated Starlink missions this year, depending on the performance of the first batch. Put a slightly different way, take the “dozens” of satellites she hinted at, multiply that number by 6, and you’ve arrived at the number of spacecraft she believes SpaceX is theoretically capable of producing and delivering in the next 7.5 months.
“Dozens” implies no less than two dozen or a bare minimum of 144 satellites potentially built and launched before the year is out. However, combined with a target orbit of 450 km (280 mi) and a planned drone ship booster recovery more than 620 km (385 mi) downrange, 36, 48, or 60 satellites seem far more likely. Tintin A/B – extremely rough, testbed-like prototypes – were about 400 kg (~900 lb) each.
As an example, SpaceX’s eight Iridium NEXT satellite launches had payloads of more than 10,000 kg (22,000 lb), were launched to an orbit around 630 km (390 mi), and required a upper stage coast and second burn on-orbit. Further, Iridium missions didn’t get the efficiency benefit that Starlink will by launching east along the Earth’s rotational axis. Despite all that, Falcon 9 Block 5 boosters were still able to land less than 250 km (155 mi) downrange after Iridium launches. Crew Dragon’s recent launch debut saw Falcon 9 place the >13,000 kg (28,700 lb) payload into a 200 km (125 mi) orbit with a drone ship landing less than 500 km (310 mi) downrange, much of which was margin to satisfy safety requirements.
Starlink-1’s target orbit is thus a third lower than Iridium NEXT, while its drone ship will be stationed more than 2.5 times further downrange. Combined, SpaceX’s first Starlink payload will likely weigh significantly more than ~13,000 kg and may end up being the heaviest payload the company has yet to launch.

Assuming a payload mass of ~14,000 kg (~31,000 lb) at launch, a worst-case scenario with ~400 kg spacecraft and a 2000 kg dispenser would translate to 30 Starlink satellites. Cut their mass to 300 kg and the dispenser to 1000 kg and that rises to ~45 satellites. Drop even further to 200 kg apiece and a single recoverable Falcon 9 launch could place >60 satellites in orbit.
Of course, this entirely ignores the elephant in the room: the usable volume of SpaceX’s standard Falcon payload fairing. It’s unclear how SpaceX would fit 24 – let alone 60 – high-performance satellites into said fairing without severely constraining their design and capabilities. SpaceX’s solution to this problem will effectively remain unanswered until launch, assuming the company is willing to provide some sort of press release and/or offer a live view of spacecraft deployment on their webcast. Given the cutthroat nature of competition with the likes of OneWeb, Telesat, LeoSat, and others, this is not guaranteed.

At the end of the day, such a major leap into action bodes extremely well for SpaceX’s ability to realize its ambitious Starlink constellation, and do so fast. For those on Earth without reliable internet access or any access at all, the faster Starlink – and competing constellations, for that matter – can be realized, the sooner all of humanity can enjoy the many benefits connectivity can bring. For those that sit under the thumb of monopolistic conglomerates like Comcast and Time Warner Cable, relief will be no less welcome.
Stay tuned as we get closer to Starlink-1’s May 15th launch date. Up next is a static fire of the mission’s Falcon 9 rocket, perhaps just two or three days from now.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.