Connect with us

News

SpaceX’s Starlink launch debut to orbit dozens of satellites later this month

Trust me, I do appreciate the irony of using a OneWeb/Arianespace render to illustrate a SpaceX Starlink launch. Nevertheless...(Arianespace)

Published

on

SpaceX President and COO Gwynne Shotwell has revealed that the company’s first dedicated Starlink launch is scheduled for May 15th and will involve “dozens” of satellites.

Corroborated by several sources, the actual number of Starlink satellites that will be aboard Falcon 9 is hard to believe given that it is a satellite constellation’s first quasi-operational launch. Suffice it to say, if all spacecraft reach orbit in good health, SpaceX will easily become the operator and owner of one of the top five largest commercial satellite constellations in the world with a single launch. Such an unprecedentedly ambitious first step suggests that the perceived practicality of SpaceX’s Starlink ambitions may need to be entirely reframed going forward.

From 0 to 100

In short, it’s hard to exaggerate just how much of a surprise it is to hear that SpaceX’s very first Starlink launch – aside from two prototypes launched in Feb. 2018 – will attempt to place “dozens” of satellites in orbit. Competitor OneWeb, for example, conducted its first launch in February 2019, placing just six satellites in orbit relative to planned future launches with 20-30. To go from 2(ish) to “dozens” in a single step will break all sorts of industry standards/traditions.

Despite the ~15 months that have passed since that first launch, SpaceX’s Starlink team has really only spent the last 6-9 months in a phase of serious mass-production buildup. As of now, the company has no dedicated satellite factory – space in Hawthorne, CA is far too constrained. Instead, the design, production, and assembly of Starlink satellites is being done in 3-4 separate buildings located throughout the Seattle/Redmond area.

One of SpaceX’s Seattle properties.

SpaceX’s Starlink team has managed to transition almost silently from research and development to serious mass-production (i.e. dozens of satellites) in the space of about half a year. The dozens of spacecraft scheduled to launch on SpaceX’s first dedicated mission – likely weighing 200-300 kg (440-660 lb) each – have also managed to travel from Seattle to Cape Canaveral in the last few months and may now be just a few days away from fairing encapsulation.

To some extent, the first flight-ready batch of “dozens” of satellites are still partial prototypes, likely equivalent to the second round of flight testing mentioned by CEO Elon Musk last year. This group of spacecraft will have no inter-satellite laser (optical) links, a feature that would transform an orbiting Starlink constellation into a vast mesh network. According to FCC filings, the first 75 satellites will be of the partial-prototype variety, followed soon after by the first spacecraft with a more or less finalized design and a full complement of hardware.

If this is just step one…

Meanwhile, Shotwell – speaking at the Satellite 2019 conference – suggested that SpaceX could launch anywhere from two to six dedicated Starlink missions this year, depending on the performance of the first batch. Put a slightly different way, take the “dozens” of satellites she hinted at, multiply that number by 6, and you’ve arrived at the number of spacecraft she believes SpaceX is theoretically capable of producing and delivering in the next 7.5 months.

“Dozens” implies no less than two dozen or a bare minimum of 144 satellites potentially built and launched before the year is out. However, combined with a target orbit of 450 km (280 mi) and a planned drone ship booster recovery more than 620 km (385 mi) downrange, 36, 48, or 60 satellites seem far more likely. Tintin A/B – extremely rough, testbed-like prototypes – were about 400 kg (~900 lb) each.

As an example, SpaceX’s eight Iridium NEXT satellite launches had payloads of more than 10,000 kg (22,000 lb), were launched to an orbit around 630 km (390 mi), and required a upper stage coast and second burn on-orbit. Further, Iridium missions didn’t get the efficiency benefit that Starlink will by launching east along the Earth’s rotational axis. Despite all that, Falcon 9 Block 5 boosters were still able to land less than 250 km (155 mi) downrange after Iridium launches. Crew Dragon’s recent launch debut saw Falcon 9 place the >13,000 kg (28,700 lb) payload into a 200 km (125 mi) orbit with a drone ship landing less than 500 km (310 mi) downrange, much of which was margin to satisfy safety requirements.

Starlink-1’s target orbit is thus a third lower than Iridium NEXT, while its drone ship will be stationed more than 2.5 times further downrange. Combined, SpaceX’s first Starlink payload will likely weigh significantly more than ~13,000 kg and may end up being the heaviest payload the company has yet to launch.

Advertisement
An Arianespace render of a OneWeb launch offers the best unofficial look yet at what SpaceX’s first Starlink launch might look like. (Ariane)

Assuming a payload mass of ~14,000 kg (~31,000 lb) at launch, a worst-case scenario with ~400 kg spacecraft and a 2000 kg dispenser would translate to 30 Starlink satellites. Cut their mass to 300 kg and the dispenser to 1000 kg and that rises to ~45 satellites. Drop even further to 200 kg apiece and a single recoverable Falcon 9 launch could place >60 satellites in orbit.

Of course, this entirely ignores the elephant in the room: the usable volume of SpaceX’s standard Falcon payload fairing. It’s unclear how SpaceX would fit 24 – let alone 60 – high-performance satellites into said fairing without severely constraining their design and capabilities. SpaceX’s solution to this problem will effectively remain unanswered until launch, assuming the company is willing to provide some sort of press release and/or offer a live view of spacecraft deployment on their webcast. Given the cutthroat nature of competition with the likes of OneWeb, Telesat, LeoSat, and others, this is not guaranteed.

Pictured here after its second launch in January 2019, Falcon 9 B1049.3 is the likeliest candidate for Starlink-1. (Pauline Acalin)

At the end of the day, such a major leap into action bodes extremely well for SpaceX’s ability to realize its ambitious Starlink constellation, and do so fast. For those on Earth without reliable internet access or any access at all, the faster Starlink – and competing constellations, for that matter – can be realized, the sooner all of humanity can enjoy the many benefits connectivity can bring. For those that sit under the thumb of monopolistic conglomerates like Comcast and Time Warner Cable, relief will be no less welcome.

Stay tuned as we get closer to Starlink-1’s May 15th launch date. Up next is a static fire of the mission’s Falcon 9 rocket, perhaps just two or three days from now.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Continue Reading