Connect with us
SpaceX has already begun closed alpha testing of Starlink user terminals in anticipation of the constellation's internet service debut. (Richard Angle) SpaceX has already begun closed alpha testing of Starlink user terminals in anticipation of the constellation's internet service debut. (Richard Angle)

News

SpaceX building almost 1500 Starlink satellites per year

Published

on

SpaceX has revealed a few key details about its burgeoning Starlink satellite internet constellation in a recent regulatory presentation, touching on overall investment, user terminal development, and its spacecraft manufacturing capabilities.

Already the single largest satellite constellation in the world by a factor of three or more, Starlink is more than 500 operational satellites strong after just nine months of launches, and the company has at least 5-8 more missions planned between now and the end of 2020. To further expand the world’s largest satellite constellation, though, SpaceX also needs to be the world’s most prolific satellite manufacturer by at least an order of magnitude.

Ever since SpaceX’s first dedicated Starlink launch in May 2019, the company has remained extremely secretive about the unprecedented satellite production infrastructure it also had to develop. Aside from a few comments by CEO Elon Musk and the occasional tidbit from regulatory documents or spaceflight conferences, very little is known and not a single photo has been released. An FCC ex parte presentation with a few specific details thus came as a surprise, revealing that SpaceX is building at least 120 Starlink satellites per month in its Redmond, Washington factory.

A stack of 60 Starlink v1.0 satellites. (SpaceX)

Based on past analysis of SpaceX’s Redmond facilities, the company has about 150,000 square feet (14,000 m^2) to work with, of which a third to half is likely dedicated to a satellite assembly line. Despite the relatively small facilities, SpaceX says it is actively building 120 satellites per month – equivalent to at least 1440 spacecraft annually. By mass, it means that SpaceX is churning out more than 30 metric tons (~69,000 lb) of satellites every single month, a figure almost certainly unprecedented in the history of satellite manufacturing.

An animation of SpaceX’s Starlink satellite constellation. (SpaceX)

Sustained over 12 months, that would equate to ~360 metric tons (10% heavier than a fully-fueled Falcon 9 V1.0 rocket) of satellites built every year. In short, with an extremely small (and thus efficient) base of operations, SpaceX is regularly producing a vast quantity of satellites – enough to indefinitely sustain two full Starlink launches per month. At that rate, SpaceX could fairly easily complete the Starlink constellation’s first ~4400-satellite phase in just three years.

Production capacity or efficiency would need to expand significantly for SpaceX to complete the second (~12,000 satellites) and third (~40,000 satellites) phases of the Starlink constellation, By then, though, the first phase would likely be generating substantial revenue, optimistically allowing SpaceX to self-fund future growth or at least dramatically reducing the need for fundraising.

Just a few of the eight Starlink launches SpaceX has completed in 2020 alone. (SpaceX)

Along those lines, the same FCC ex parte presentation included a note that “SpaceX has invested hundreds of millions of dollars in Starlink to date,” including “over $70 million developing and producing thousands of user terminals per month.” In other words, SpaceX has apparently spent less – and possibly much less – than $1 billion designing, manufacturing, and launching almost 600 satellites. For comparison, competitor OneWeb apparently spent more than $3.4 billion and filed for bankruptcy before it had launched even 100 satellites.

That exceptional efficiency will, as CEO Elon Musk has noted several times, hopefully make Starlink the first low Earth orbit (LEO) satellite internet constellation in history to not go bankrupt. The company hopes to begin rolling out a much wider Starlink beta test after the 14th v1.0 satellite launch – currently four launches away. If all goes well during that beta test, Starlink could become the first LEO internet constellation in history to begin generating significant revenue not long after.

Advertisement
-->

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading