

News
SpaceX considers second Crew Dragon launch pad to reduce risk from Starship
Reuters reports that SpaceX has proposed modifying a second Florida launch pad to support Crew Dragon missions after NASA raised concerns about the threat posed by plans to launch Starship out of the only pad currently certified for Dragon.
After more than a year of downtime, SpaceX restarted the construction of an orbital Starship launch site at NASA’s Kennedy Space Center LC-39A pad in late 2021. SpaceX has leased Pad 39A since 2014 and conducted 49 Falcon rocket launches out of the facility since its first use in 2017. Prior to SpaceX’s lease, Pad 39A supported 82 Space Shuttle launches from 1981 to 2011 and every Apollo Program launch to the Moon in the 1960s and 1970s, making it one of the most storied and well-used launch sites in the history of US spaceflight.
In 2018, Pad 39A began supporting launches of SpaceX’s Falcon Heavy, which was and still is the most powerful and capable rocket currently in operation. In May 2020, a Falcon 9 rocket and Crew Dragon spacecraft lifted off with two NASA astronauts in tow, marking SpaceX’s first human spaceflight and the United States’ first domestic astronaut launch of any kind since 2011. The next era of the historic pad could include Starship, a fully-reusable two-stage rocket that SpaceX has been developing in earnest since the mid-2010s. However, NASA is worried that a failure of that immense and unproven rocket could almost instantly destroy what is currently the only launch pad on Earth capable of launching the space agency’s astronauts to the International Space Station (ISS).
One certainly can’t blame NASA for worrying. In its latest iteration, SpaceX’s Starship 39A launch mount will sit roughly 1000 feet (~300m) East of Pad 39A’s existing Falcon launch facilities, which include a tower and arm that are needed for astronauts and cargo to access and board Crew and Cargo Dragons. The Starship mount is also around 1600 feet (~500m) northeast of Pad 39A’s lone horizontal integration hangar, without which Falcon launch operations would become far more difficult or even impossible.
For the Falcon pad and tower, there is a slight consolation: Starship’s own skyscraper-sized launch tower will be located directly between those Falcon facilities and Starship before and during launches and could partially protect them from any hypothetical blast. The hangar will be fully unprotected, however.


NASA is worried that if a Starship fails before or shortly after launch and explodes at or near its adjacent launch mount, it could destroy or damage the infrastructure the space agency and SpaceX need to launch Crew Dragon to the International Space Station (ISS). At the moment, Boeing – NASA’s second Commercial Crew partner – is likely a year or more away from its first operational astronaut launch, during which Falcon 9 and Crew Dragon will remain a single point of failure that could theoretically sever the space agency’s connection to its own space station at any moment.
In response to NASA’s concern, NASA executive Kathy Lueders – in an interview with Reuters – says that SpaceX has begun working with the agency on plans to both “harden” Pad 39A and modify its Cape Canaveral Space Force Station (CCSFS) LC-40 pad to support Dragon launches. According to Reuters, however, receiving approval to put those plans into action “could take months.” Depending on how significant the facilities LC-40 would need are, there’s also a chance that SpaceX would need to complete a new FAA environmental review to construct a crew access tower.
Meanwhile, Pad 39A is also the only launch pad in the world capable of supporting Falcon Heavy, which has also become an extremely important rocket for uncrewed NASA spacecraft launches, NASA’s plans to get cargo to its lunar Gateway space station, and to the US military. Modifying one of SpaceX’s other pads to support Falcon Heavy would likely be even harder and take even longer than adding Crew Dragon capabilities to LC-40. In both cases, it’s likely that NASA and the US military would strongly prefer – if they don’t eventually outright require – that SpaceX have backup options already constructed and ready to go before risking the destruction of Pad 39A with its first Starship launch.
39A’s Starship facilities could easily require another 6-12 months of work before they’ll be ready for launch, however, leaving a good amount of time for SpaceX to alleviate the concerns of its US government customers before they might actually start to disrupt plans for East Coast Starship launches.
Elon Musk
SpaceX is preparing to launch Starship V2 one final time
The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades.

SpaceX is preparing to launch its final Starship V2 rocket on October 13, 2025. The launch closes the curtain on Starship V2 and marks the start of the ambitious spacecraft’s V3 era.
Liftoff for Flight 11 is scheduled for 7:15 p.m. ET from Starbase in South Texas, with a 75-minute launch window. The mission will test reentry dynamics, new landing burn configurations, and heat-shield upgrades ahead of the transition to the next-generation Starship V3.
Starship V3 and beyond
Elon Musk confirmed on X that Starship V3 is already in production and could be “built & tested” and perhaps even flown before the end of 2025. The new version is expected to feature major performance and scale improvements, with Musk stating that Starship V3, provided that things go well, might be capable of reaching Mars, though V4 is more likely to perform a full-scale mission to the red planet.
“Only one more V2 left to launch,” Musk wrote back in August following Starship’s successful Flight 10 mission. In another post, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”
Starship V2’s final mission
Flight 11 is designed to push the limits of Starship V2. SpaceX engineers have intentionally removed heat-shield tiles in vulnerable areas to analyze how the vehicle handles atmospheric reentry under stress, as noted in a Space.com report. The test will also refine subsonic guidance algorithms and new landing burn sequences for the Super Heavy booster that would be used for Starship V3.
“Super Heavy will ignite 13 engines at the start of the landing burn and then transition to a new configuration with five engines running for the divert phase. Previously done with three engines, the planned baseline for V3 Super Heavy will use five engines during the section of the burn responsible for fine-tuning the booster’s path, adding additional redundancy for spontaneous engine shutdowns.
“The booster will then transition to its three center engines for the end of the landing burn, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America,” SpaceX wrote in a post on its official website.
Elon Musk
xAI’s new facility will save Memphis 5 billion gallons of water annually
The project was described as a long-needed solution for the region as it will be capable of recycling up to 13 million gallons of greywater daily.

Elon Musk’s artificial intelligence startup, xAI, has officially broken ground on its $80 million wastewater treatment facility in Memphis, Tennessee. The project aims to reduce strain on the Memphis aquifer by 9% and repurpose 20% of wastewater from the nearby Memphis T.E. Maxson wastewater facility that would otherwise flow back into the Mississippi River.
A major step towards sustainability
City officials, including Councilman J. Ford Canale and Memphis Chamber of Commerce CEO and President Ted Townsend, joined xAI staff at the October 10 ceremony. The project was described as a long-needed solution for the region as it will have a treatment capacity of 13 million gallons daily, which would then be used for industrial cooling use xAI and the Tennessee Valley Authority (TVA).
This means that the facility will help conserve 5 billion gallons of potable water annually, easing demand on Memphis’ primary water system. At these levels, xAI Memphis noted that its wastewater treatment facility will feature the largest ceramic membrane MBR in the world, using 13,000 membrane modules that collectively span over 900,000 square feet, roughly the size of 16 football fields.
Construction permits have been secured for the pump station, while the main operations permit from the Tennessee Department of Environment and Conservation remains under review.
A privately funded push
The wastewater treatment facility represents a rare privately funded water reclamation initiative, with xAI covering construction costs, as noted in a Yahoo News report. The company filed preliminary plans through its affiliate CTC Property LLC in 2024, hinting at the startup’s long-term commitment to sustainable infrastructure around its growing Memphis operations. TVA CEO and President Don Moul shared his excitement for the project.
“This is a big day for Memphis, Tennessee. This initiative not only reduces our need to purchase water from MLGW for our nearby Allen Combined Cycle Plant, but it also eases demand on the region’s potable water system. By recycling water for cooling purposes, we’re helping to preserve drinking water for the community and advancing a solution that benefits both the environment and the Greater Memphis area,” he said.
News
Japan paves the way for Tesla Full Self-Driving domestic rollout
Tesla’s vehicles are allowed to be retrofitted with a software update that could enable the activation of self-driving features.

Japan seems to be taking some serious steps to pave the way for the domestic rollout of Tesla’s Full Self-Driving (FSD) system in the country.
This was hinted at by a decision from the Ministry of Land, Infrastructure, Transport and Tourism Ministry.
FSD update
As noted in a report from Nikkei, Tesla’s artificial intelligence-powered vehicles are allowed to be retrofitted with a software update that could enable the activation of their self-driving features. These features would be rolled out through an over-the-air (OTA) software update for vehicles that have already been sold to consumers.
Previous reports have indicated that Tesla Japan has started the testing of FSD technology on public roads. At the time, reports indicated that Tesla Japan employees have been conducting the tests, and the company is planning to release its FSD software to consumers in the near future, at least pending compliance with safety standards and guidelines.
New guidelines
In a comment on X, former Tesla Board Member Hiro Mizuno explained that the Ministry of Land, Infrastructure, Transport and Tourism Ministry’s decision is no small matter, as it could pave the way for the smooth rollout of features like FSD to Tesla consumers in Japan.
“The Ministry of Land, Infrastructure, Transport and Tourism’s decision to allow retrofitting of autonomous driving through software updates is significant. Currently, Tesla is the only manufacturer actively pursuing this, but I had thought that if actual autonomous driving were to begin, it would be impossible to keep up if the approval process had to be repeated for every software update. As a result, this decision will make it easier for all manufacturers to introduce autonomous driving in Japan,” he wrote in a post on X.
-
News2 weeks ago
Tesla Giga Berlin’s water consumption has achieved the unthinkable
-
News2 weeks ago
Tesla unveils charging innovation that will make the Semi instantly successful
-
News2 weeks ago
Waymo responds to shocking video that would have gotten Tesla FSD crucified
-
News2 weeks ago
Lucid CEO shades Tesla Model S: “Nothing has changed in 12 years now”
-
News2 weeks ago
Elon Musk slams Sky News over Epstein invite: “Deserves complete contempt”
-
News2 weeks ago
Tesla Model Y sells faster than diesel cars and other EVs in Sweden’s used market
-
News6 days ago
Tesla FSD (Supervised) V14.1 with Robotaxi-style dropoffs is here
-
News1 week ago
Tesla all but confirms that affordable Model Y is coming Tuesday