News
SpaceX’s Starship to spar with Blue Origin for NASA Moon landing contracts
On November 18th, NASA announced that it had added commercial Moon lander offerings from SpaceX, Blue Origin, Sierra Nevada Corporation, and others to a pool of companies that will be able to compete to affordably deliver cargo to the surface of the Moon. With this latest addition of landers, competition could get very interesting, very quickly.
In November 2018, NASA revealed a big step forward in its plans to kickstart robotic exploration and utilization of the Moon, announcing nine new partners in its Commercial Lunar Payload Services (CLPS) initiative. Designed first and foremost to encourage the commercial development of unprecedentedly affordable Moon landers, the program’s first nine partners included Lockheed Martin, Astrobotic, Intuitive Machines, Masten Space, Orbit Beyond, and several others.
In May 2019, NASA announced the next step, contracting with three of those nine aforementioned providers to bring their proposed Moon landers to fruition and attempt their first lunar landings. Orbit Beyond dropped out shortly after but Astrobotic and Intuitive Machines continue to work towards that goal and aim to attempt the first Moon landings with their respective Peregrine and Nova-C spacecraft no earlier than (NET) July 2021. Intuitive Machines has contracted a SpaceX Falcon 9 for its first Nova-C Moon launch, while Astrobotic side with the very first launch of United Launch Alliance’s (ULA) next-generation Vulcan rocket.

Generally speaking, the landers offered by the first nine CLPS partners were on the smaller side of the spectrum, capable of delivering around 50-100 kg (100-200 lb) of useful cargo to the surface of the Moon with launch masses around 1500-3000 kg (3300-6600 lb). On November 18th, NASA announced that a second group of partners would be added to the competitive ‘pool’ of CLPS-eligible Moon landers, all of which can technically compete to land a range of NASA payloads on the Moon. The new five are Ceres Robotics, Tyvak Nano-Satellite Systems, Sierra Nevada Corporation, Blue Origin, and SpaceX.
Next to nothing is known about Tyvak’s or Ceres Robotics’ apparently proposed landers, but a render of SNC’s Moon lander concept shares some obvious similarities with its Dream Chaser spacecraft and expendable power and propulsion module, implying that it’s likely on the larger side. Blue Origin and SpaceX, of course, proposed their Blue Moon and Starship spacecraft.


As a 100%-speculative guess, Ceres and Tyvak’s landers are likely in the same ~100 kg-class range as the nine CLPS providers selected before it, while Sierra Nevada’s lander concept is probably closer to 500 kg (1100 lb). According to Blue Origin, it’s recently-updated Blue Moon lander is designed to deliver up to 4500 kg (9900 lb) to the lunar surface and is expected to attempt its first Moon landing no earlier than 2024.
Unsurprisingly, SpaceX’s Starship blows all 13 other lander proposals out of the water and, in the context of the CLPS program, is a bit like bringing a Gatling gun to a paintball match. According to SpaceX, a fully-refueled Starship should be able to land 100 metric tons (220,000 lb) of cargo on the Moon, although it’s unclear if that would allow the Starship to return to Earth.

In simpler terms, there is just no chance whatsoever that the practical scope of NASA’s CLPS program could possibly warrant more than a few metric tons delivered to the surface of the Moon. NASA as a whole doesn’t have the budget needed to build useful several-dozen-ton spacecraft or experiments, let alone CLPS. In that sense, the real question to ask is what could Starship manage if the useful payloads it needs to deliver are no more than a few metric tons?
Assuming SpaceX’s technical know-how is mature enough to allow Starship to preserve cryogenic propellant for weeks or months after launch, it’s entirely conceivable that a Moon launch with, say, 10 tons of cargo could be achieved with just one or two in-orbit refuelings, all while leaving that Starship enough margin to safely return to Earth. Given that NASA awarded Intuitive Machines and Astrobotic approximately $80M apiece to land 50-100 kg on the Moon, it’s far too easy to imagine SpaceX quoting a similar price to deliver 10+ tons to the Moon by enabling full Starship reuse.
All things considered, politics still looms in the distance and there is just as much of a chance that SpaceX (and maybe even Blue Origin) will be passed over by CLPS when the time comes to award the next round of Moon delivery contracts. Still, the odds of something far out of the ordinary happening are much higher with a program like CLPS. Stay tuned!
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.
News
Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.
A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity.
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.
Samsung’s 5G modem
As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.
Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.
The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.
Deepening Tesla–Samsung ties
The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.
Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.
Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.