Connect with us

SpaceX

SpaceX Starship ignites Raptor engine for the first time ahead of hop tests

Starhopper vents aggressively during a March 30th test. (NASASpaceflight - bocachicagal)

Published

on

SpaceX CEO Elon Musk says that the company’s first full-scale Starship prototype has completed an inaugural hop test in South Texas, igniting its lone Raptor engine and straining against a trio of tethers attached to its legs.

While relatively minor in the scope of SpaceX’s next-generation rocket program, Starhopper’s successful tethered hop now paves the way towards untethered testing in which the terminally suborbital testbed could spend several minutes aloft and reach altitudes as high as 5 km (3 mi). Aside from Starhopper itself, this perhaps marks an even more significant milestone for Raptor, completing the engine’s first successful test-fire as part of an integrated flight vehicle.

Starhopper’s first successful Raptor ignition comes after the better part of two weeks of concerted testing of the integrated prototype, beginning around March 18/19. That testing included 5+ wet dress rehearsals (WDRs) that involved loading the vehicle with a significant quantity of liquid methane and oxygen propellant, verifying the performance of avionics and plumbing, and ultimately attempting to ignite Raptor.

Ironically, less than 24 hours before Starhopper’s successful ignition, SpaceX CEO Elon Musk had noted that the rough prototype, its ground systems, or both were suffering from issues caused by ice formation in propellant valves. Reading between the lines, it’s likely that the issues involved valves on both Starhopper and its ground support equipment ‘sticking’ (i.e. failing to actuate) when commanded. While not usually a particularly large risk for the overall health of the vehicle and pad, uncooperative valves will almost invariably throw a wrench in the gears of attempted rocket operations, particularly when dealing with cryogenic propellants like those used by Starhopper.

As the supercool methane and oxygen inevitably begin to warm after leaving the propellant plant and entering Starhopper’s tanks, a fraction of the liquid will gradually transition into gas and expand, requiring constant venting of the tanks to prevent overpressure events that could damage or destroy the rocket. Falcon 9 and Heavy exhibit this same behavior, as do most other liquid-fueled rockets. This helps to explain the massive venting seen throughout Starhopper’s half-dozen or so WDR tests, as well as large but routine fireballs as excess methane gas was burned off as part of the process of vehicle and pad pressure regulation.

One of Starhopper’s three tethers, April 2nd. (NASASpaceflight – bocachicagal)
Workers labor beneath Starhopper in the days leading up to the vehicle’s first hop test and Raptor ignition. (NASASpaceflight – bocachicagal)

According to Musk, “all systems [were] green” during Starhopper’s most critical test yet. If Raptor and its prototype host are still in good health after their integrated three-second ignition test, SpaceX could attempt several more static fires and tethered hops over the next few days, mirroring the extremely rapid test series observed in February with the first completed Raptor engine.

If all proceeds nominally, it’s possible that SpaceX could begin untethered hop tests in the near future. Regardless, this marks an excellent step forward for the company’s next-generation Starship/Super Heavy spaceship and launch vehicle – all data gathered in this phase will help to optimize and improve the final design of the first orbital vehicles.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX maintains unbelievable Starship target despite Booster 18 incident

It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.

Published

on

Credit: SpaceX/X

SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight. 

Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement. 

Starship V3 is still on a rapid development path

SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.” 

SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.

Advertisement
-->

Booster 18 failure not slowing Starship V3’s schedule

SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.

Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.

Continue Reading

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading