Connect with us

News

SpaceX Starship booster’s ‘hot gas’ thrusters make first public appearance

While different in several key ways, new methane-oxygen thrusters recently spotted for the first time on Starship hardware are likely similar to Raptor and Crew Dragon's SuperDraco abort thrusters. (SpaceX)

Published

on

‘Hot gas’ thrusters meant to boost the efficiency of SpaceX’s Starship spacecraft and Super Heavy boosters have been spotted in public for the first time.

On the evening of June 21st, spaceflight photographer Brady Kenniston – on assignment for NASASpaceflight – caught the first glimpses ever of what amounts to the newest rocket engine designed and built by SpaceX. As yet unnamed, SpaceX CEO Elon Musk has consistently referred to the new engine as a “hot gas thruster” for several years, though virtually no concrete details have ever been shared.

The reason behind the lack of major visible progress is simple enough: until Starship is ready for serious orbital testing, hot-gas thrusters just aren’t necessary. Instead, SpaceX has relied on tried and true cold gas thrusters derived – or quite literally taken, in the case of Starhopper – from those used on Falcon 9 and Falcon Heavy boosters to maintain attitude control in space and safely land back on Earth.

For Starhopper and Starships SN5 and SN6, all three of which focused on simple hop tests, those cold-gas thrusters primarily augmented Raptor’s thrust vectoring capabilities by fine-tuning vehicle rotation and attitude. On Starships SN8, SN9, SN10, SN11, and SN15, cold-gas thrusters played a more substantial role in their more complex medium-altitude test flights, flipping each ship horizontal at apogee, helping to maintain stability during skydiver-style freefalls back to Earth, and augmenting three Raptor engines during the final landing flip and landing burn.

By all appearances, the thrusters did their jobs perfectly on all nine test flights. However, those eight suborbital prototypes could all afford to expend large portions of their mass budgets on a plethora of pressure vessels filled with tons of nitrogen gas. More importantly, empty Starships and their Super Heavy boosters are expected to weigh anywhere from 10-50 times more than Falcon 9’s booster and upper stage, and SpaceX’s suborbital prototypes have also required much less performance (delta V) than operational ships and boosters will need.

Advertisement
-->
https://www.youtube.com/watch?v=y23V1pYq0uw

Cold gas (nitrogen) thrusters are too inefficient and the exponential aspects of rocket engineering too cruel for what works on Falcon to efficiently meet the needs of Starship and Super Heavy. SpaceX’s long-planned solution has been the development of a bipropellant thruster that would borrow from Raptor expertise and use the same methane and oxygen propellant – albeit in their high-pressure gaseous forms. If properly realized, such a thruster could offer around five times the efficiency and thrust of a similarly-sized cold-gas system – a boon for maneuvering and manipulating massive 100-250 ton (~250,000-550,000 lb) ships and boosters in space.

In theory, moving from nitrogen to methalox thrusters also means that Starship could refuel its thrusters using a tiny fraction of the vast supply of liquid methane and oxygen propellant it will already be carrying to the Moon or Mars. Ultimately, though, Musk says that those hot gas attitude control thrusters will debut on the Super Heavy booster assigned to Starship’s first orbital test flight. While SpaceX’s initial July target now appears to be out of the question, all flight and pad hardware could still be ready to launch as early as August or September.

Update: One month after Elon Musk stated that SpaceX was “aiming” to have hot gas thrusters on the first flightworthy Super Heavy booster, the CEO says those thrusters would be “an unnecessary complication for now” and “are being removed to speed up time to” Starship’s first orbital launch.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX reaches incredible milestone with Starlink program

Published

on

Credit: SpaceX

SpaceX reached an incredible milestone with its Starlink program with a launch last night, as the 3,000th satellite of the year was launched into low Earth orbit.

On Monday, SpaceX also achieved its 32nd flight with a single Falcon 9 rocket from NASA’s Kennedy Space Center.

The mission was Starlink 6-92, and it utilized the Falcon 9 B1067 for the 32nd time this year, the most-used Falcon booster. The flight delivered SpaceX’s 3000th Starlink satellite of the year, a massive achievement.

There were 29 Starlink satellites launched and deployed into LEO during this particular mission:

SpaceX has a current goal of certifying its Falcon boosters for 40 missions apiece, according to Spaceflight Now.

The flight was the 350th orbital launch from the nearby SLC-40, and the 3,000 satellites that have been successfully launched this year continue to contribute to the company’s goal of having 12,000 satellites contributing to global internet coverage.

There are over five million users of Starlink, the latest data shows.

Following the launch and stage separation, the Falcon 9 booster completed its mission with a perfect landing on the ‘Just Read the Instructions’ droneship.

The mission was the 575th overall Falcon 9 launch, highlighting SpaceX’s operational tempo, which continues to be accelerated. The company averages two missions per week, and underscores CEO Elon Musk’s vision of a multi-planetary future, where reliable connectivity is crucial for remote work, education, and emergency response.

As Starlink expands and works toward that elusive and crucial 12,000 satellite goal, missions like 6-92 pave the way for innovations in telecommunications and enable more internet access to people across the globe.

With regulatory approvals in over 100 countries and millions of current subscribers, SpaceX continues to democratize space, proving that reusability is not just feasible, but it’s also revolutionary.

Continue Reading

News

Tesla expands new Full Self-Driving program in Europe

Published

on

Credit: Tesla Europe & Middle East/X

Tesla expanded its new Full Self-Driving program, which gives people the opportunity to experience the company’s suite, in Europe.

Tesla recently launched an opportunity for Europeans to experience Full Self-Driving, not in their personal vehicles, but through a new ride-along program that initially launched in Italy, France, and Germany back in late November.

People could experience it by booking a reservation with a local Tesla showroom, but timeslots quickly filled up, making it difficult to keep up with demand. Tesla expanded the program and offered some additional times, but it also had its sights set on getting the program out to new markets.

It finally achieved that on December 9, as it launched rides in Denmark and Switzerland, adding the fourth and fifth countries to the program.

Tesla confirmed the arrival of the program to Denmark and Switzerland on X:

The program, while a major contributor to Tesla’s butts in seats strategy, is truly another way for the company to leverage its fans in an effort to work through the regulatory hurdles it is facing in Europe.

Tesla has faced significant red tape in the region, and although it has tested the FSD suite and been able to launch this ride-along program, it is still having some tremendous issues convincing regulatory agencies to allow it to give it to customers.

CEO Elon Musk has worked with regulators, but admitted the process has been “insanely painful.”

The most recent development with FSD and its potential use in Europe dealt with the Dutch approval authority, known as the RDW.

Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key

Tesla said it believes some regulations are “outdated and rules-based,” which makes the suite ineligible for use in the European jurisdiction.

The RDW is working with Tesla to gain approval sometime early next year, but there are no guarantees. However, Tesla’s angle with the ride-along program seems to be that if it can push consumers to experience it and have a positive time, it should be easier for it to gain its footing across Europe with regulatory agencies.

Continue Reading

News

Tesla ramps hiring for Roadster as latest unveiling approaches

Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering.

Published

on

Tesla Roadster at Tesla Battery Day 2020 Credit: @BLKMDL3 | Twitter

Tesla is ramping up hiring for positions related to the Roadster program, the company’s ultra-fast supercar that has been teased to potentially hover by CEO Elon Musk.

The company seems to be crossing off its last handful of things before it plans to unveil the vehicle on April Fool’s Day, just about four months away.

Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering. All three are located in Northern California, with two being at the Fremont Factory and the other at the company’s Engineering HQ in Palo Alto.

Technical Program Manager, Battery Manufacturing

Located in Fremont, this role specifically caters to the design of the Roadster to factory operations. It appears this role will mostly have to do with developing and engineering the Roadster’s battery pack and establishing the production processes for it:

“You will foster collaboration across design engineering, manufacturing, quality, facilities, and production to align with company priorities. Additionally, you will understand project opportunities, challenges, and dependencies; translate scattered information into concise, complete messages; and communicate them to every team member. As the business process development lead, you will develop, maintain, and implement tools and processes to accelerate battery manufacturing execution, achieve cross-functional alignment, and deliver highly efficient systems.”

Manufacturing Engineer, Roadster

Also located in Fremont, this role also has to deal with the concept development and launch of battery manufacturing equipment. Tesla says:

“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams.”

Manufacturing Vision Engineer, Battery Vision

This position is in Palo Alto at Tesla’s Engineering Headquarters, and requires the design and scale of advanced inspection and control systems to next-generation battery products:

“You’ll work on automation processes that directly improve battery performance, quality, and cost, collaborating with world-class engineers in a fast-paced, hands-on environment.”

Developing and deploying 2D and 3D vision and measurement systems from proof-of-concept to deployment on high-volume battery manufacturing lines is part of the job description.

Roadster Unveiling

Tesla plans to unveil the Roadster on April 1, and although it was planned for late this year, it is nice to see the company put out a definitive date.

Musk said on the Joe Rogan Experience Podcast in late October:

“Whether it’s good or bad, it will be unforgettable. My friend Peter Thiel once reflected that the future was supposed to have flying cars, but we don’t have flying cars. I think if Peter wants a flying car, he should be able to buy one…I think it has a shot at being the most memorable product unveil ever.”

Production should begin between 12 to 18 months after unveiling, so we could see it sometime in 2027.

Continue Reading