Connect with us

News

SpaceX wants to launch its next Starship ASAP

Starship SN10 is ironically front and center in this SN9 prelaunch photo published by SpaceX.

Published

on

Contrary to recent comments from CEO Elon Musk, SpaceX appears to be forging ahead at full speed in a bid to launch its next Starship ASAP.

Known as Starship serial number 10 (SN10), the prototype is the latest in a series of four ships SpaceX has ultimately set aside from low(er)-altitude development testing. Starship SN8 – the first functional prototype to reach its full height – debuted on December 8th, 2020, blowing expectations out of the water with a failure mere seconds before the end of a more than six-minute flight test. According to Musk, had a fuel tank remained properly pressurized from start to finish, SN8 could have very well stuck the landing on the first try.

Two months later, after the better part of two weeks of licensing and static fire test delays, Starship SN9 attempted to carry the torch forward but suffered an unrelated failure slightly earlier than SN8’s. One of two Raptor engines failed to ignite for a high-risk flip and landing burn, causing the Starship to impact the ground even more violently than its predecessor. It’s unclear why the ill-fated Raptor failed to ignite or why the engine that did ignite appeared to experience a major failure shortly thereafter but rocket propulsion is extraordinarily difficult – and Raptor is near – or at – the end of that scale.

While SpaceX obviously hasn’t spun around and fixed a complex Starship propulsion issue in a matter of days, Musk eventually revealed his opinion that he, his engineers, or some combination of both “were too dumb” to exploit one obvious way to mitigate the risk of engine failure during flip and landing. That ‘obvious’ tweak: reignite all three of Starship’s available landing engines, not just two.

Advertisement

In theory, with a fast-enough response time, Starship could ignite all three Raptors, perform a supercharged flip from a belly- to tail-down orientation, and selectively shut off one of the engines based on the data from what is essentially a midair static fire. In the event that all three engines are performing nominally, Starship would shut down the least useful engine (i.e. the Raptor with the least leverage) for a gentle two-engine landing burn.

A failed two-engine landing burn vs. a successful three-engine ascent burn. (SpaceX)

Impressively, Musk said that SpaceX would implement those changes immediately, attempting the first three-engine reignition as early as Starship SN10’s launch debut. Already at the launch pad when Starship SN9 lifted off, SpaceX revealed plans to launch SN10 as early as February 2021 at the end of SN9’s test flight webcast.

A few days prior to SN9’s ill-fated test flight, Musk had also stated that Starship SN10 would perform a “cryoproof” test and only then have its three Raptor engines installed. Instead, in an apparent change of plans, SpaceX installed Starship SN10’s Raptors – SN39, SN50, and an unknown third engine – from February 5th to 7th.

On Sunday, local longtime resident Mary (aka BocaChicaGal) received an official safety alert from SpaceX, signaling plans for an explosive Starship test of some kind as early as Monday, February 8th. Historically, those overpressure safety warnings have only been distributed when SpaceX is preparing for a Starship static fire attempt. In other words, it’s possible that Starship SN10’s very first test could be a live wet dress rehearsal (WDR) with flammable liquid oxygen and methane propellant. If that WDR goes well, SpaceX could move directly into a one, two, or three-engine static fire.

Of course, as SN9’s lengthy test period rubbed in, Starship is still in the prototype stage and is far from a mature system, meaning that it’s always safer to expect delays than an on-time performance. To be clear, it’s far more likely that SpaceX will perform a familiar “cryo proof” test with non-flammable liquid nitrogen – perhaps hoping to complete a cryoproof and static fire in the same test window.

Either way, stay tuned for updates and follow along with NASASpaceflight’s excellent live coverage in the event that SpaceX really is prepared to static fire Starship SN10 between 9am and 6pm CST (UTC-6) on Monday.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading