Connect with us

News

SpaceX rolls last Starship off the assembly line ahead of “major upgrades”

SpaceX's fourth full-size Starship prototype is effectively complete. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has installed Starship serial number 11’s (SN11) steel nosecone, effectively completing the rocket and marking the end of production for a series of four virtually identical prototypes.

SpaceX has soared through a limited production run of four full-height Starship prototypes with a more or less frozen design, simultaneously serving as a pilot run for a nascent Starship assembly line while also producing high-fidelity prototypes for the program’s first high-altitude flight testing. Work on Starship SN8 – the first of those four prototypes – began around July 2020 when labeled hardware was first spotted.

Parts of SN9, SN10, SN11, and SN12 gradually started to appear over the next few months. Less than four months after production began, (half of) Starship SN8 rolled to the launch pad in late October to kick off a series of acceptance tests.

After an unusually long ~6 weeks of testing, SpaceX declared Starship SN8 ready for flight and ultimately pulled off a high-altitude launch that made it just a dozen or so seconds (~5%) away from a complete success – far further than anyone really expected. That surprising level of success appeared to lead SpaceX to reevaluate its plans and the strategic design of its test plans.

One result was observed in publicly-visible labels SpaceX uses to identify the dozens of Starship parts in work at any given moment: after SN12, only a few minor unfinished parts of SN13 and SN14 were ever spotted, departing from the flood of activity observed while building SN8 through SN11. In November, CEO Elon Musk revealed that “major upgrades” were planned for Starship SN15 and all subsequent prototypes.

Advertisement
-->

The implication was that SpaceX had already written off no fewer than three Starships (SN8-SN10) to prove that a new, exotic approach to rocket landings could work as planned. If those three failed, SpaceX could likely use Starships SN11 through SN14 – likely enough prototypes to either succeed or conclude that a redesign is necessary. Ultimately, after Starship SN8’s spectacular success and last-second failure, SpaceX seemingly concluded that it was unlikely to need a full seven prototypes to achieve the first soft landing(s) and effectively killed Starships SN12, SN13, and SN14 in the cradle.

On January 23rd, Starship SN12’s completed engine section was rather decisively scrapped before stacking had even begun. (NASASpaceflight – bocachicagal)

SpaceX likely concluded that SN8 had demonstrated that a vast majority of Starship’s existing design was already sound, reducing enough risk to confidently begin major upgrades – akin to building a more permanent structure only after ensuring that the foundation is stable. Indicating exactly that, SpaceX has already begun stacking Starship SN15 and has been churning out hardware for SN16, SN17, and SN18 for the last few months.

That ultimately means that one or more upgraded Starships will likely be ready to carry the torch forward as soon as SN10 and SN11 flight testing comes to an end – whether that means continuing recovery attempts or pushing the envelope higher and faster after the first successful soft landing(s).

The nature of those “upgrades” remains unclear beyond apparent fit-and-finish improvements and the possibility of a more easily manufacturable nosecone design, but it’s clear that things will become clearer far sooner than later at SpaceX’s current rate of progress.

SpaceX rolls Starship SN11 to the high bay for nose installation, February 5th.(NASASpaceflight – bocachicagal)
A worker prepares the top of SN11’s tank section for nose installation. (NASASpaceflight – bocachicagal)
Starship SN11’s assembly is effectively complete, likely meaning that the prototype will be ready to take over immediately if/when SN10 lands in less than one piece. (NASASpaceflight – bocachicagal)

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading