Connect with us

News

SpaceX Starbase construction takes priority as next orbital Starship, Super Heavy pair come together

A sea of steel waits to become Starships and Super Heavy boosters. (NASASpaceflight - bocachicagal)

Published

on

As SpaceX teams slowly prepare the first orbital-class Starship and Super Heavy booster for the next-generation rocket’s first full-stack launch, the company has simultaneously begun assembling a second ship/booster pair. However, it’s clear that orbital pad construction remains a priority.

Known as Ship 20 and Booster 4, the two stages of the first orbital-class Starship first arrived at the launch site in early August. Only eight weeks later has Starship S20 finally become the first of the pair to attempt and complete one of two crucial proof tests, opening the door for one or several Raptor static fires in the coming week or two. Meanwhile, Booster 4 has had all 29 of its Raptor engines installed, uninstalled, and reinstalled and twice been placed on and removed from Starbase’s orbital launch mount in the same time frame but has yet to attempt any proof testing.

Despite the apparent delays and challenges slowing Ship 20 and Booster 4’s test debuts and two plodding FAA reviews that appear all but guaranteed to preclude an orbital launch attempt in 2021, though, SpaceX has recently begun assembling a second two-stage Starship.

Save for Starhopper back in 2019, no Starship or Super Heavy prototype has spent nearly as long at the launch site without a single test as Ship 20 and Booster 4 have. To an extent, there have likely been some technical delays while assembling, outfitting, and working with two first-of-their-kind prototypes. Still, the difference between past vehicles like Starship SN15 and Super Heavy Booster 3 are so stark that some portion of the testing delays almost has to be a conscious decision made by SpaceX.

Advertisement

To be able to fully proof and static fire test Super Heavy B4, SpaceX first needs to plumb, wire, and outfit Starbase’s orbital launch mount and complete a majority of the orbital pad’s massive tank farm. However, the orbital pad and its many unfinished systems are situated just a thousand (~300m) east of the suborbital launch site and Starship test facilities, which are complete and ready for testing. To test a Starship at those facilities, SpaceX has to entirely clear the pad of personnel – now several hundred people at the peak of construction – for 6-12+ hours.

The implication is that SpaceX management effectively chose to rip off the bandage now rather than later, sacrificing timely testing of Starship S20 to allow a near-total focus on orbital pad construction and activation over the last ~8 weeks. It’s hard to say if that’s paid off but the fact that SpaceX has chosen this particular moment to begin assembling the next orbital-class Starship and Super Heavy suggests that a clearer plan is starting to come together.

B4/S20, meet B5/S21

Parts of Starship S21 and Super Heavy B5 have been floating around Starbase’s build site for weeks. There was a multi-week period, for example, where the site’s massive high bay was effectively unused – clearly a conscious choice given SpaceX’s history of Starship prototype production earlier this year and late last. Parts of Super Heavy B5 were likely ready for assembly (i.e. stacking) by mid to late August. The ‘mid bay’ used for Starship tank section assembly has been similarly underutilized for even longer – only recently accepting its first Starship S21 section after supporting assembly of the orbital pad’s final storage tank.

Booster 5 is roughly half-finished.

Instead, Booster 5 stacking began around September 15th. At the current rate of assembly, which has slowed down considerably in the last week, SpaceX’s second flightworthy Super Heavy could reach its full 69m (~225 ft) height as early as mid-October. Starship S20 likely won’t be far behind. Further, thanks to SpaceX’s preferred style of continuous improvement, Booster 5 and Ship 21 production already appear well on track to outpace Booster 4 and Ship 20. With B5, rather than installing a range of external equipment (avionics, wiring, plumbing) after assembly is finished, SpaceX appears to be completing some of those subsystems during stacking, potentially speeding up final assembly by 1-2+ weeks. With S21, SpaceX has begun outfitting the Starship’s nose cone with heat shield tiles far earlier in the assembly process than it did with S20.

Advertisement
Nine days of heat shield work on Ship 21’s nosecone. (NASASpaceflight – bocachicagal)
A tiled section of Ship 21’s propellant tanks. (NASASpaceflight – bocachicagal)
Ship 21’s engine section was recently stacked on top of its skirt section. (NASASpaceflight – bocachicagal)

Given that it has taken SpaceX the better part of a month to finish and spot-fix Starship S20’s heat shield since the prototype’s second trip to the test site, taking those lessons learned to heart and getting Starship S21’s heat shield installation right on the first try could cut weeks from final assembly.

In the meantime, after completing Ship 20’s first cryoproof test on September 29th, SpaceX will hopefully be able to kick off the first six-engine Raptor static fire test campaign within the next week or so. With any luck, the start of B5/S21 assembly also means that the orbital launch pad is nearly ready to support Super Heavy B4’s first proof tests, even if static fires with anything close to a full set of 29 Raptors appear to be weeks away. Regardless, it looks like it won’t be long before SpaceX will be juggling two pairs of orbital-class Starships and Super Heavy boosters.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y Performance Review: The Best Trim of the Best Vehicle?

Published

on

Credit: Tesla

The Tesla Model Y Performance was in my hands for seven days after the company reached out and got me a brand new unit. As a Premium All-Wheel-Drive owner, I was really interested to see if the Performance trim was worth the $11,000 difference, and what I learned might be a surprise.

The only “performance” version of any Tesla vehicle I’ve had the opportunity to have several days with was the Cyberbeast back in June, and a few days with that made me want a Cybertruck more than I already did. It had white-knuckle speed, and as someone who truly loves to drive a larger vehicle, it fit the bill for everything I wanted out of an electric pickup.

With that past experience, I was truly excited to try the new Model Y Performance, especially considering I own a Model Y already, and after six months of ownership, it has truly won me over as the best car I’ve ever owned. Although my 2008 Ford Escape Hybrid is a close second, mostly due to nostalgia and it being my “dream car” as a kid in high school at the time, the Model Y is unequivocally better, obviously. It’s hard to shake the feelings of your first “nice” car; I think we could all relate to that in a way.

Before I even picked up the Model Y Performance, I was expecting a handful of things: better performance, better handling, more comfortable seats, and a thirst for spirited driving on the windy backroads of Southern Pennsylvania. Admittedly, a snowstorm disrupted a lot of my testing, but I was still able to have some fun in the car.

With that being said, my thoughts are sure to potentially ruffle some feathers.

First Impressions of the Tesla Model Y Performance

I picked up the Model Y Performance on January 19 and had it for one week. The Ultra Red paint with the White interior option was a great look, and it was fun to have a car with that look, considering my Model Y is Black on Black.

One thing that is really interesting and somewhat surprising is that Tesla hasn’t adjusted the fact that the Ultra Red is a different shade than the Performance brake calipers. Additionally, the rear light bar, which signals braking, is a different shade of red than the car and the brake calipers.

This was something that the Tesla Showroom employees pointed out to me, and, just like they said, I’ll never be able to not see it.

Interior Quality

The first thing I noticed was the Performance seats, which are geared to hug you a tad more and keep you intact during spirited drives. They were, without a doubt, more comfortable than the seats in my Premium AWD.

Interestingly, when I gave this opinion on X, some Performance owners said that the seats were less comfortable and, on longer drives, I’d feel it. My Fiancè and I drove about 120 miles in the car that weekend, and we had no complaints. They were supremely comfortable, and we both really enjoyed them, almost to the point that we’d rather have those seats than the ones in the Premium AWD.

Additionally, the center screen is slightly larger, but not to the extent that I had really noticed any true difference. In the new Model Y for 2026, the screen is the same size as the one in the Performance trim at 16 inches.

It was previously 15.4 inches.

Some other changes include Performance pedals that are made of what appears to be a stainless steel alloy and Carbon Fiber accents on the doors and dash. Other than that, there are no significant differences; it’s very similar to the other Premium trims of the Model Y. The big difference from an interior standpoint is simply the front seats.

Exterior Differences

Tesla used a lot of different techniques to help improve performance and aerodynamics, including a carbon fiber spoiler and rear diffuser, both of which help with air displacement and improve handling, range, and overall performance.

These additions are clean and give the car a sporty look, perfectly catered to the aesthetic Tesla was obviously going for with the car. I’ve already mentioned the brake calipers, which are an awesome touch, but the offsetting tones of red between them and the paint are a bit displeasing to the eye. I hope this is something that is resolved, but it isn’t completely necessary, nor a priority.

The Nitty Gritty – Ride Quality and Performance

With all the changes from an aesthetic standpoint, including the ones that are geared toward improving performance, the real indicator of whether this trim is worth the extra $11,000 is simple: Is it faster and more fun to drive than the Premium All-Wheel-Drive?

I’m going to break that down here:

Speed and Acceleration

There is a slightly noticeable difference in acceleration, as the 4.6-second 0-60 MPH on the AWD is 1.3 seconds slower than the 3.3-second rate on the Performance. Although that sounds like a decent difference, the big change I noticed was the sound. In the Performance, you can really hear those motors hum, which was a nice touch and really interesting and fun to experience.

It was definitely quicker than my AWD, but I think I really expected to be thrown back into my seat like I was with the Cyberbeast, which features a 2.6-second 0-60 MPH acceleration rate. That was truly a massive difference that anyone can really feel. The 1.3-second difference between the AWD and Performance was, in a way, underwhelming.

I was not disappointed with it, but I really hoped to feel that same rush of adrenaline I had with the Cyberbeast. I think I’m just so used to the acceleration at this point that it does not “wow” me any longer. At the time of the Cyberbeast Demo Drive, I was still driving a gas car.

The Performance, like the AWD, is very capable. It’s great for merging on the highway and getting into a tight window when traffic is heavier. It’s great for taking some quicker drives, and it’s a lot of fun to take out on the road. By no means am I disappointed with it, but I will say maybe my expectations were a tad too high.

Handling

This is where I will say I was sort of disappointed, because I have heard from many people that the suspension is better in the Model Y Performance compared to the All-Wheel-Drive.

I didn’t really feel like it was “better,” but the same, which is still an absolutely amazing ride experience. My AWD is great for tight turns at increased speeds, where I felt the difference was in the seats, as those Performance ones truly did seem to “hug” me more and keep me more stable.

The Performance trim features adaptive suspension, lower/stiffer springs, and larger wheels, all of which are meant to improve handling. I’m not sure if it is simply because I didn’t get to push it as much as I wanted to due to weather, but I felt like the feel of the ride was really similar to my AWD. I had no complaints.

Overall Thoughts

The Model Y Performance is definitely a sportier look than the AWD and Standard models, and it definitely has its advantages. I think that it’s a really great car, but I did not feel an incredible number of differences from the AWD.

There was a lot to love: the seats, the look, the acceleration. The latter is something that is definitely great if you plan to take your car to a track, but for public roads, it’s not something that is a substantial “need.” When I pushed it on a road local to me and posted a video of it, the commenters were sure to tell me I was going too fast.

I want to be clear that I have zero complaints about the Model Y Performance, and if it were to have come out ahead of me getting my AWD, I probably would have entertained the idea if I could have made the numbers work.

The Model Y, from Standard to Premium, is a great car in every sense of the word. The ride quality is great, the build quality is excellent, and the interior and exterior features, as a whole, make it the best car in the world (to me).

Continue Reading

Elon Musk

Elon Musk explains why Tesla’s 4680 battery breakthrough is a big deal

Tesla confirmed in its Q4 and FY 2025 update letter that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process.

Published

on

Credit: Tesla/X

Tesla’s breakthroughs with its 4680 battery cell program mark a significant milestone for the electric vehicle maker. This was, at least, as per Elon Musk in a recent post on social media platform X.

Tesla confirmed in its Q4 and FY 2025 update letter that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process.

Why dry-electrode matters

In a post on X, Elon Musk stated that making the dry-electrode process work at scale was “incredibly difficult,” calling it a major achievement for Tesla’s engineering, production, and supply chain teams, as well as its partner suppliers. He also shared his praise for the Tesla team for overcoming such a difficult task. 

“Making the dry electrode process work at scale, which is a major breakthrough in lithium battery production technology, was incredibly difficult. Congratulations to the @Tesla engineering, production and supply chain teams and our strategic partner suppliers for this excellent achievement!” Musk wrote in his post.

Advertisement

Tesla’s official X account expanded on Musk’s remarks, stating that dry-electrode manufacturing “cuts cost, energy use & factory complexity while dramatically increasing scalability.” Bonne Eggleston, Tesla’s Vice President of 4680 batteries, also stated that “Getting dry electrode technology to scale is just the beginning.”

Tesla’s 4680 battery program

Tesla first introduced the dry-electrode concept at Battery Day in 2020, positioning it as a way to eliminate solvent-based electrode drying, shrink factory footprints, and lower capital expenditures. While Tesla has produced 4680 cells for some time, the dry cathode portion of the process proved far more difficult to industrialize than expected.

Together with its confirmation that it is producing 4680 cells in Austin with both electrodes manufactured using the dry process, Tesla has also stated that it has begun producing Model Y vehicles with 4680 battery packs. As per Tesla, this strategy was adopted as a safety layer against trade barriers and tariff risks. 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks,” Tesla wrote in its Q4 and FY 2025 update letter. 

Advertisement
Continue Reading

News

Even Tesla China is feeling the Optimus V3 fever

As per Tesla China, Optimus V3 is “about to be unveiled.”

Published

on

Credit: Tesla Optimus/X

Even Tesla China seems to have caught the Optimus V3 fever, with the electric vehicle maker teasing the impending arrival of the humanoid robot on its official Weibo account. 

As per Tesla China, Optimus V3 is “about to be unveiled.”

Tesla China hypes up Optimus V3

Tesla China noted on its Weibo post that Optimus V3 is redesigned from first principles and is capable of learning new tasks by observing human behavior. The company has stated that it is targeting annual production capacity of up to one million humanoid robots once manufacturing scales.

During the Q4 and FY 2025 earnings call, CEO Elon Musk stated that Tesla will wind down Model S and Model X production to free up factory space for the pilot production line of Optimus V3. 

Advertisement

Musk later noted that Giga Texas should have a significantly larger Optimus line, though that will produce Optimus V4. He also made it a point to set expectations with Optimus’ production ramp, stating that the “normal S curve of manufacturing ramp will be longer for Optimus.”

Credit: Tesla China

Tesla China’s potential role

Tesla’s decision to announce the Optimus update on Weibo highlights the importance of the humanoid robot in the company’s global operations. Giga Shanghai is already Tesla’s largest manufacturing hub by volume, and Musk has repeatedly described China’s manufacturers as Tesla’s most legitimate competitors.

While Tesla has not confirmed where Optimus V3 will be produced or deployed first, the scale and efficiency of Gigafactory Shanghai make it a plausible candidate for future humanoid robot manufacturing or in-factory deployment. Musk has also suggested that Optimus could become available for public purchase as early as 2027, as noted in a CNEV Post report.

“It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does,” Musk said during the earnings call.

Continue Reading