Connect with us

News

SpaceX’s most important Super Heavy booster part makes first appearance

Published

on

What is arguably the most complex and important part of SpaceX’s Super Heavy booster prototype has made its first appearance at the company’s South Texas Starship factory.

Following in the footsteps of Starship development, Super Heavy has been able to extensively borrow from the many lessons learned over the course of building, testing, flying, and building more Starship prototypes. SpaceX is able to use virtually identical materials, equipment, and techniques to build and assemble both Starship and Super Heavy propellant tank barrels and domes, while both stages will also share an extensive foundation of avionics, plumbing, propulsion, and ground systems, among other things.

In fact, lacking a conical nose, secondary (‘header’) propellant tanks, flaps, a reusable orbital-class heatshield, and vacuum-optimized Raptor engines, Super Heavy is actually substantially simpler than the Starships it will one day launch towards orbit. However, not everything is simpler. Super Heavy will ultimately be the largest and most powerful liquid-fueled rocket stage ever built or tested – power that demands as many as 28 Raptor engines and a thrust structure capable of feeding and withstanding them.

Designing, building, and testing such a thrust structure is arguably one of – if not the – most challenging engineering hurdle standing between SpaceX and its aspirational Super Heavy design. It’s the first of those Super Heavy-specific thrust structures – in the form of a tank dome – that was spotted at SpaceX’s Boca Chica, Texas Starship factory on January 25th, roughly six weeks after its main component was spotted.

Unlike Starship, which relies on a small central ‘thrust puck’ fit for three sea-level-optimized Raptor engines and plans for three larger vacuum-optimized engines that will attach to the side of its hull, Super Heavy’s current design iteration features as many as 28 sea-level Raptors. Aside from CEO Elon Musk revealing that Super Heavy would have a central cluster of eight engines, the precise configuration has been a mystery.

Advertisement
-->
A look at Starship’s three-and-three thrust section configuration. (SpaceX)

The reality, as recently captured in photos above by NASASpaceflight photographers and contributors Mary (BocaChicaGal) and Jack Beyer, appears to be a much larger donut-shaped ring with space for eight gimballing Raptor engines. The remaining 20 Raptor engines would then be installed – possible mounted to the skirt, the thrust dome, or both – in the space left between the thrust donut and Super Heavy’s skirt.

Either way, the structures behind the two rings of engines will have to withstand at least 6600 metric tons (14.5 million lbf) of thrust at liftoff – approximately twice the thrust of Saturn V and Soviet N-1 rockets and more than three times the thrust of SpaceX’s own Falcon Heavy. Holding eight Raptors, the donut structure and dome recently pictured for the first time will also have to singlehandedly stand up to 1600 tons (3.5 million lbf; two Falcon 9s’ worth) of thrust while gravity, acceleration, and some 2500 tons of supercooled liquid oxygen push in the opposite direction.

Starship SN9’s standard thrust puck and dome. (NASASpaceflight – bocachicagal)
While seemingly identical from the ‘waist’ down, the first Super Heavy thrust dome obviously features a far larger Raptor engine ‘puck’ (donut?) at its base. (NASASpaceflight – bocachicagal)
Starship SN8 is slowly lowered onto Stand A, outfitted with a hydraulic ram used to simulate the mechanical stress of Raptor thrust. Super Heavy boosters will likely be tested in a similar manner, at first. (NASASpaceflight – bocachicagal)

In simpler terms, the business end of Super Heavy poses an extraordinarily difficult challenge and SpaceX has already built the first true-to-life prototype, with future iterations likely close on its heels. Much like Starship, if/when prototype booster number one (BN1) passes basic pressure and cryogenic proof tests, SpaceX will likely focus the rest of Super Heavy’s first test campaign on stressing the rocket’s unproven thrust structure to its design limits.

Like Starship, SpaceX will likely try to begin with nonexplosive methods, perhaps using a similar – but far larger – series of hydraulic rams to less riskily simulate the thrust of 8-28 Raptor engines. A steel structure spotted on a recent aerial overflight of SpaceX’s Starship factory might even fit the bill for such a structure, though only time will tell.

Based on an apparent acceleration of Super Heavy assembly work that may have started last week, as well as the crucial appearance of the last missing puzzle piece in the form of BN1’s thrust dome, the first booster could be completed and ready for testing sooner than later.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink achieves major milestones in 2025 progress report

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.

Published

on

Credit: Starlink/X

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.

SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.

Key achievements from Starlink’s 2025 Progress

Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.

Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.

Starlink Direct to Cell

Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.

Advertisement
-->

“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.

starlinkProgressReport_2025 by Simon Alvarez

Continue Reading

News

Giga Nevada celebrates production of 6 millionth drive unit

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

Published

on

Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

6 million drive units

The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote. 

The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.

Giga Nevada’s essential role

Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.

Advertisement
-->

Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.

Continue Reading

News

Tesla Supercharger network delivers record 6.7 TWh in 2025

The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.

Published

on

tesla-diner-supercharger
Credit: Tesla

Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide. 

To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.

Record 6.7 TWh delivered in 2025

The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream. 

Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.

This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.

Advertisement
-->

Resilience after Supercharger team changes

2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”

Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.

Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible. 

Continue Reading