Connect with us

SpaceX

SpaceX & ULA could compete to launch NASA’s Orion spacecraft around the Moon

The Orion spacecraft and European Service Module (ESM) visualized in Earth orbit. (NASA)

Published

on

In barely 48 hours, the future of NASA’s SLS rocket was buffeted relentlessly by a combination of new priorities in the White House’s FY2020 budget request and statements made before Congress by NASA administrator Jim Bridenstine. Contracted by NASA to companies like Boeing, the outright failure of SLS contractors to stem years of launch delays and billions in cost overruns has lead to what can only be described as a possible tipping point, one that could benefit companies like ULA, SpaceX, and Blue Origin.

On March 11th, the White House’s 2020 NASA budget request proposed an aggressive curtail of mission options available for the SLS rocket, preferring instead to save hundreds of millions (and eventually billions) of dollars by prioritizing commercial launch vehicles and indefinitely pausing all upgrade work on SLS. On March 13th, Administrator Bridenstine stated before Congress that he was dead-set on ensuring that NASA sticks to a current 2020 deadline for Orion’s first uncrewed circumlunar voyage (EM-1), even if it required using two commercial rockets (either Falcon Heavy or Delta IV Heavy) to send the spacecraft around the Moon next year. In both cases, it’s safe to say that the political tides have somehow undergone a spectacular 180-degree shift in attitude toward SLS, the first salvo in what is guaranteed to be a major political battle.

“Deferred” upgrades

Of the many potential challenges the ides of March have placed before SLS, the first and potentially most significant involves the rocket’s tentative path to future upgrades over the course of its operation. Those upgrades primarily center around the Exploration Upper Stage (EUS) and a new mobile launcher (ML) platform, as well as a longer-term vision known as SLS Block 2. At least with respect to the EUS, NASA (and politicians) were apparently less and less okay with the extraordinary amount of money and time Boeing suggested it would need to develop the new upper stage, to the extent that cutting (or “deferring”) its development could likely save NASA billions of dollars between now and the distant and unstable completion date. Without the EUS, SLS would be dramatically less useful for extreme deep space exploration, effectively the entire purpose of its existence. Instead, the White House included language that would limit SLS launches to crew transfer missions with the Orion spacecraft and nothing more, cutting out heavy cargo missions for science or station-building. Ultimately, those crew transport launches would probably be more than enough to keep SLS Block 1 and Orion busy.

https://twitter.com/JimBridenstine/status/1105859576023445506?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1105859576023445506&ref_url=https%3A%2F%2Fwww.teslarati.com%2Fwp-admin%2Fpost.php%3Fpost%3D97670%26action%3Dedit

However, two days later, Administrator Bridenstine stated before Congress that he was dead-set on ensuring that NASA sticks to a current 2020 deadline for Orion’s first uncrewed circumlunar voyage (EM-1), going so far as to suggest that NASA was examining the possibility of launching the ~26 ton (57,000 lb) spacecraft on a commercial rocket, followed by a separate launch of a boost stage to send Orion to the Moon. If this were to occur, the consequences could be far-reaching for SLS, potentially delaying the first crewed launch of Orion on SLS until EM-3 and creating a ready-made, one-to-one replacement for SLS at drastically lower costs. At that point, nothing short of political heroics and aggressive bribery could save the SLS program from outright cancellation.

As it stands, the only rockets capable of conceivably supporting a 2020 launch of the 26-ton Orion are ULA’s Delta IV Heavy and SpaceX’s Falcon Heavy, both of which are certified by NASA for (uncrewed) launches. In fact, Falcon 9 was very recently certified by NASA’s Launch Services Program (LSP) to launch the highest priority NASA payloads, signifying the space agency’s growing confidence in SpaceX’s reliability and mission assurance. While the process of certifying Falcon Heavy for an uncrewed Orion launch would be far more complicated than simply grouping Falcon 9’s readiness with Heavy, it would no doubt help that Falcon Heavy is based on hardware (aside from the center core) almost identical to that found on Falcon 9.

NASA’s SLS rocket seen in its Block 1 configuration with on Orion capsule on top. (NASA)
The Orion spacecraft and European Service Module (ESM). (NASA)

The fact that Bridenstine indicated that the primary goal of these potential changes was to speed up EM-1 – an uncrewed demonstrated of Orion functionally similar to Crew Dragon’s recent DM-1 mission – is also significant, as is the fact that such a commercial SLS stand-in would require two separate launches to complete the mission. One launch would place Orion and its service module (ESM) into Low Earth Orbit (LEO), while a second launch would place a partially or fully-fueled upper stage into orbit to propel Orion on a trajectory that would take it around the Moon and back to Earth, similar to the milestone Apollo 8 mission. The need for two launches and the fact that Orion would be uncrewed means that both SpaceX and ULA would be possible candidates for either or both launches, potentially allowing NASA to exploit a competitive procurement process that could lower costs further still.

If Europa Clipper is anything to go off of, launching Orion EM-1 on a commercial rocket could save NASA and the US taxpayer at least $700M (before any potential development costs), aided further by potential competition between ULA and SpaceX. On the other hand, a system that can launch Orion and support EM-1 could fundamentally support all Orion EM missions, of which many are planned. Whether or not Bridenstine and the White House have considered the ramifications, what that translates into is a direct and pressing threat to the continued existence of SLS, with the White House recommending that the rocket be barred from launching large science missions or space station segments as the NASA administrator proposes making it redundant for Orion launches. As Ars Technica’s Eric Berger rightly notes in the tweet at the top of this article, those are the only three conceivable projects where SLS would have any value at all.

If NASA actually went through with this preliminary plan to launch Orion around the Moon on a commercial rocket, they agency would have also fundamentally created a packaged replacement for SLS with a price tag likely 2-5 times cheaper. If Congress had the option to choose between two offerings with similar end-results where one of the two could save the US hundreds of millions of dollars at minimum, it would be almost impossible to argue for the more expensive solution.

Battle of the Heavies

Despite the potential competitive procurement opportunity for a commercial Orion launch, things could get significantly more complicated depending on the political motivations behind the White House and NASA administrator. While Bridenstine explicitly avoided saying as much, the options available to NASA would be ULA’s Boeing-built Delta IV Heavy (DIVH) rocket and SpaceX’s brand new Falcon Heavy. DIVH holds a present-day advantage with active NASA LSP certification for uncrewed spacecraft launches, something Falcon Heavy has yet to achieve.

Nevertheless, it could be the case that NASA, Bridenstine, and/or the White House have a vested interested in potentially replacing SLS for crewed Orion launches entirely. Either way, it’s incredibly unlikely that NASA would launch SLS for the first time ever with astronauts aboard, a massive risk that would also patently contradict the agency’s posture on Commercial Crew launch safety, which has resulted in one uncrewed demo for both Boeing and SpaceX before either be allowed to launch astronauts. NASA also demanded that SpaceX launch Falcon 9 Block 5 seven times in the same configuration meant to launch crew. If NASA is actually interested in at least preserving the option for future crewed launches using the same commercial arrangement, Falcon Heavy is by far the most plausible option Orion’s first uncrewed launch. NASA and SpaceX are deep into the process of human-rating Falcon 9 for imminent Crew Dragon launches with NASA astronauts aboard, meaning that NASA’s human spaceflight certification engineers are about as intimately familiar with Falcon 9 as they possibly can be.

Advertisement
Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)
Delta IV Heavy lifts off in August 2018 for NASA’s Parker Solar Probe mission. (Tom Cross)

Given that much of Falcon Heavy has direct heritage to Falcon 9, particularly so for the family’s newest Block 5 variant, SpaceX has a huge leg up over ULA’s Delta IV Heavy if it ever came time to certify either heavy-lift rocket for crewed launches. In a third-party study commissioned by NASA and completed in 2009, The Aerospace Corporation concluded that Delta IV Heavy could be human-rated but would require far-reaching modifications to almost every aspect of the rocket’s hardware and software. Most notably, Aerospace found – in a truly ironic twist of fate – that Boeing would likely need to develop a wholly new upper stage for a human-rated Delta IV Heavy, increasing redundancy by increasing the number of RL-10 engines from two to four. As proposed by Boeing, the Exploration Upper Stage – under threat of deferment due to high cost and slow progress – would also feature four RL-10 engines and much of the same upgrades Boeing would need to develop for EUS. Aside from an entirely new upper stage, ULA would also need to develop and qualify an entirely new variant of the RS-68A engine that powers each DIVH booster. Ultimately, TAC believed it would take “5.5 to 7 years” and major funding to human-rate Delta IV Heavy.

Meanwhile, Falcon Heavy already offers multiple-engine-out capabilities, uses the same M1D and MVac engines – as well as an entire upper stage – that are on a direct path to be human-rated later this year, and two side boosters with minimal changes from Falcon 9’s nearly human-rated booster. NASA would still need to analyze the center core variant and stage separation mechanisms, as well as Falcon Heavy as an integrated and distinct system, but the odds of needing major hardware changes would be far smaller than Delta IV Heavy.

Falcon 9 B1051 lifts off with Crew Dragon on the human-rated spacecraft and rocket’s first join launch, March 2nd. (NASA)

Regardless, it will be truly fascinating to see how this wholly unexpected series of events ultimately plays out as Congress and its several SLS stakeholders begin to analyze the options at hand and (most likely) formulate a battle plan to combat the threats now facing the NASA rocket. According to Administrator Bridenstine, NASA will have come to a final decision on how to proceed with Orion EM-1 as soon as a few weeks from now.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX set to launch Axiom’s mission for diabetes research on the ISS

Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Published

on

(Credit: SpaceX)

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.

Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).

The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.

Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.

“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.

Advertisement

Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.

The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.

Continue Reading

Elon Musk

EU considers SES to augment Starlink services

The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

Published

on

EU-ses-starlink-augment
(Credit: SES)

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.

In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.

Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.

“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.

Advertisement

SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.

“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.

Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.

“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.

SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.

Advertisement
Continue Reading

News

Amazon launches Kuiper satellites; Can it rival Starlink?

With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Published

on

amazon-kuiper-satellite-starlink-rival
(Credit: Amazon)

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.

Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.  

Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.

Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.

United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.

Advertisement

Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.

“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”

Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.

Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.

Advertisement
Continue Reading

Trending