Tesla has filed a recently-published patent application titled “High-Speed Wiring System Architecture” that addresses an important aspect of its Full Self-Driving (FSD) suite: redundancy.
Traditional computer wiring systems often have no redundancy in their communications. Individual devices are connected to a central point (such as a processor), and each device receives communications separately from that point via some sort of cable. If one of the connections fails, communications to the device fails, and in a self-driving situation, that could mean complete system failure.
Simply adding more backup cables isn’t really a great solution, either. More wires mean more connection points, and if you’ve ever worked with microcontrollers or circuit boards professionally or as a hobby, you can already see the downside to this. More connection points mean bigger boards, and bigger boards mean higher manufacturing costs.
This is where Tesla’s new wiring system comes in, which was published on August 15, 2019 as US Patent Publication No. 2019/0248310.

The wiring architecture, as described, comprises a bi-directional backbone cable that forms a loop to and from a processor; along that backbone are connected devices (i.e., segments) with hubs inside associated with one or more cameras and/or radars. The backbone can function as two separate loops, meaning if one portion of the backbone fails, data from all the devices and hubs can still be sent to and from the processor thanks to the dual-loop capacity.
Perhaps a good way to visualize this is to imagine bumper cars or a marble traveling in a loop unimpeded. If a barrier were to suddenly be erected, the car and marble would bump the barrier and travel in the opposite direction. Or, instead of a barrier to bump, imagine a sharp U-turn came up, forcing the travel back in the other direction. The U-turn would happen on either side of the barrier, meaning motion (communication) would still continue back and forth to the processor despite a break in the larger loop (backbone).
The specific advantage of this new architecture over traditional systems, other than less cables connected to the processor, is that each hub within the devices is also connected in serial or in parallel to the other hubs via the backbone. If one hub within a device fails, the other hubs can still transmit to the backbone and thus to the processor. In a traditional system, if one cable to/from a device fails, all communications to/from radars and cameras inside the device fails.

Essentially, what Tesla’s done here is mitigate the damage of one thing failing in an FSD system to just that one thing. Here’s how the application sums up that concept: “In embodiments, when backbone is formed using a bi-directional cable…then the wiring system architecture can tolerate one fault in the backbone while still maintaining communication pathways for all hubs and devices.”
Notably, Tesla’s patent application also specifies that its technology could be used in a variety of vehicles, including semi-trucks, indicating the company may intend to use the architecture as a standard setup for all its FSD programs in the future. Additionally, language is included to broaden the architecture’s application to farming, nautical, and other industrial applications.
A few of Tesla’s recent patent applications have demonstrated numerous efforts being made to improve the safety of FSD systems wherever opportunities for improvement are found. For example, an application published in May titled “System and Method for Handling Errors in a Vehicle Neural Network Processor” describes a way to safely handle errors encountered in self-driving software. Another application titled “Autonomous Driving System Emergency Signaling” describes a method of quickly communicating emergency information from vehicle sensors feeding into autonomous driving software. While Full Self-Driving may take a significant amount of time to be fully implemented for a variety of reasons, there’s no question that Tesla is working hard to make it a reality.
News
Tesla Robotaxi Safety Monitor seems to doze off during Bay Area ride
We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.
A Tesla Robotaxi Safety Monitor appeared to doze off during a ride in the California Bay Area, almost ironically proving the need for autonomous vehicles.
The instance was captured on camera and posted to Reddit in the r/sanfrancisco subreddit by u/ohmichael. They wrote that they have used Tesla’s ride-hailing service in the Bay Area in the past and had pleasant experiences.
However, this one was slightly different. They wrote:
“I took a Tesla Robotaxi in SF just over a week ago. I have used the service a few times before and it has always been great. I actually felt safer than in a regular rideshare.
This time was different. The safety driver literally fell asleep at least three times during the ride. Each time the car’s pay attention safety alert went off and the beeping is what woke him back up.
I reported it through the app to the Robotaxi support team and told them I had videos, but I never got a response.
I held off on posting anything because I wanted to give Tesla a chance to respond privately. It has been more than a week now and this feels like a serious issue for other riders too.
Has anyone else seen this happen?”
My Tesla Robotaxi “safety” driver fell asleep
byu/ohmichael insanfrancisco
The driver eventually woke up after prompts from the vehicle, but it is pretty alarming to see someone like this while they’re ultimately responsible for what happens with the ride.
We won’t try to blame the camera person for the incident, because it clearly is not their fault. But it seems somewhat interesting that they did not try to wake the driver up and potentially contact Tesla immediately to alert them of the situation.
They should have probably left the vehicle immediately.
Tesla’s ride-hailing service in the Bay Area differs from the one that is currently active in Austin, Texas, due to local regulations. In Austin, there is no Safety Monitor in the driver’s seat unless the route requires the highway.
Tesla plans to remove the Safety Monitors in Austin by the end of the year.
News
Tesla opens Robotaxi access to everyone — but there’s one catch
Tesla has officially opened Robotaxi access to everyone and everyone, but there is one catch: you have to have an iPhone.
Tesla’s Robotaxi service in Austin and its ride-hailing service in the Bay Area were both officially launched to the public today, giving anyone using the iOS platform the ability to simply download the app and utilize it for a ride in either of those locations.
It has been in operation for several months: it launched in Austin in late June and in the Bay Area about a month later. In Austin, there is nobody in the driver’s seat unless the route takes you on the freeway.
In the Bay Area, there is someone in the driver’s seat at all times.
The platform was initially launched to those who were specifically invited to Austin to try it out.
Tesla confirms Robotaxi is heading to five new cities in the U.S.
Slowly, Tesla launched the platform to more people, hoping to expand the number of rides and get more valuable data on its performance in both regions to help local regulatory agencies relax some of the constraints that were placed on it.
Additionally, Tesla had its own in-house restrictions, like the presence of Safety Monitors in the vehicles. However, CEO Elon Musk has maintained that these monitors were present for safety reasons specifically, but revealed the plan was to remove them by the end of the year.
Now, Tesla is opening up Robotaxi to anyone who wants to try it, as many people reported today that they were able to access the app and immediately fetch a ride if they were in the area.
We also confirmed it ourselves, as it was shown that we could grab a ride in the Bay Area if we wanted to:
🚨 Tesla Robotaxi ride-hailing Service in Austin and the Bay Area has opened up for anyone on iOS
Go download the app and, if you’re in the area, hail a ride from Robotaxi pic.twitter.com/1CgzG0xk1J
— TESLARATI (@Teslarati) November 18, 2025
The launch of a more public Robotaxi network that allows anyone to access it seems to be a serious move of confidence by Tesla, as it is no longer confining the service to influencers who are handpicked by the company.
In the coming weeks, we expect Tesla to then rid these vehicles of the Safety Monitors as Musk predicted. If it can come through on that by the end of the year, the six-month period where Tesla went from launching Robotaxi to enabling driverless rides is incredibly impressive.
News
Tesla analyst sees Full Self-Driving adoption rates skyrocketing: here’s why
“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”
Tesla analyst Stephen Gengaro of Stifel sees Full Self-Driving adoption rates skyrocketing, and he believes more and more people will commit to paying for the full suite or the subscription service after they try it.
Full Self-Driving is Tesla’s Level 2 advanced driver assistance suite (ADAS), and is one of the most robust on the market. Over time, the suite gets better as the company accumulates data from every mile driven by its fleet of vehicles, which has swelled to over five million cars sold.
The suite features a variety of advanced driving techniques that many others cannot do. It is not your typical Traffic-Aware Cruise Control (TACC) and Lane Keeping ADAS system. Instead, it can handle nearly every possible driving scenario out there.
It still requires the driver to pay attention and ultimately assume responsibility for the vehicle, but their hands are not required to be on the steering wheel.
It is overwhelmingly impressive, and as a personal user of the FSD suite on a daily basis, I have my complaints, but overall, there are very few things it does incorrectly.
Tesla Full Self-Driving (Supervised) v14.1.7 real-world drive and review
Gengaro, who increased his Tesla price target to $508 yesterday, said in an interview with CNBC that adoption rates of FSD will increase over the coming years as more people try it for themselves.
At first, it is tough to feel comfortable with your car literally driving you around. Then, it becomes second nature.
Gengaro said:
“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”
Tesla Full Self-Driving take rates also have to increase as part of CEO Elon Musk’s recently approved compensation package, as one tranche requires ten million active subscriptions in order to win that portion of the package.
The company also said in the Q3 2025 Earnings Call in October that only 12 percent of the current ownership fleet are paid customers of Full Self-Driving, something the company wants to increase considerably moving forward.