Connect with us

News

Tesla patent reveals ‘High Speed Wiring’ design for full self-driving safety

(Image: Tesla)

Published

on

Tesla has filed a recently-published patent application titled “High-Speed Wiring System Architecture” that addresses an important aspect of its Full Self-Driving (FSD) suite: redundancy.

Traditional computer wiring systems often have no redundancy in their communications. Individual devices are connected to a central point (such as a processor), and each device receives communications separately from that point via some sort of cable. If one of the connections fails, communications to the device fails, and in a self-driving situation, that could mean complete system failure.

Simply adding more backup cables isn’t really a great solution, either. More wires mean more connection points, and if you’ve ever worked with microcontrollers or circuit boards professionally or as a hobby, you can already see the downside to this. More connection points mean bigger boards, and bigger boards mean higher manufacturing costs.

This is where Tesla’s new wiring system comes in, which was published on August 15, 2019 as US Patent Publication No. 2019/0248310.

“High-Speed Wiring System Architecture” patent application figure, one embodiment. | Image: Tesla/USPTO

The wiring architecture, as described, comprises a bi-directional backbone cable that forms a loop to and from a processor; along that backbone are connected devices (i.e., segments) with hubs inside associated with one or more cameras and/or radars. The backbone can function as two separate loops, meaning if one portion of the backbone fails, data from all the devices and hubs can still be sent to and from the processor thanks to the dual-loop capacity.

Perhaps a good way to visualize this is to imagine bumper cars or a marble traveling in a loop unimpeded. If a barrier were to suddenly be erected, the car and marble would bump the barrier and travel in the opposite direction. Or, instead of a barrier to bump, imagine a sharp U-turn came up, forcing the travel back in the other direction. The U-turn would happen on either side of the barrier, meaning motion (communication) would still continue back and forth to the processor despite a break in the larger loop (backbone).

Advertisement
-->

The specific advantage of this new architecture over traditional systems, other than less cables connected to the processor, is that each hub within the devices is also connected in serial or in parallel to the other hubs via the backbone. If one hub within a device fails, the other hubs can still transmit to the backbone and thus to the processor. In a traditional system, if one cable to/from a device fails, all communications to/from radars and cameras inside the device fails.

A traditional computer wiring architecture. | Image: Tesla/USPTO

Essentially, what Tesla’s done here is mitigate the damage of one thing failing in an FSD system to just that one thing. Here’s how the application sums up that concept: “In embodiments, when backbone is formed using a bi-directional cable…then the wiring system architecture can tolerate one fault in the backbone while still maintaining communication pathways for all hubs and devices.”

Notably, Tesla’s patent application also specifies that its technology could be used in a variety of vehicles, including semi-trucks, indicating the company may intend to use the architecture as a standard setup for all its FSD programs in the future. Additionally, language is included to broaden the architecture’s application to farming, nautical, and other industrial applications.

A few of Tesla’s recent patent applications have demonstrated numerous efforts being made to improve the safety of FSD systems wherever opportunities for improvement are found. For example, an application published in May titled “System and Method for Handling Errors in a Vehicle Neural Network Processor” describes a way to safely handle errors encountered in self-driving software. Another application titled “Autonomous Driving System Emergency Signaling” describes a method of quickly communicating emergency information from vehicle sensors feeding into autonomous driving software. While Full Self-Driving may take a significant amount of time to be fully implemented for a variety of reasons, there’s no question that Tesla is working hard to make it a reality.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading