News
Tesla can solve an annoying part of its cars’ ownership experience with Maxwell’s supercapacitors
When Tesla acquired Maxwell technologies, the electric vehicle community was appropriately excited. Maxwell, after all, works on projects such as dry battery electrode tech and supercapacitors, both of which are believed to hold a lot of potential in the emerging electric vehicle sector. But as the countdown to the highly-anticipated Battery Day draws near, speculations suggest that Tesla acquired Maxwell mainly due to the company’s dry battery electrode tech, not its supercapacitors. Yet according to Andrey Shigaev, CEO of Geyser Batteries, supercapacitors still hold some potential uses for Tesla’s electric cars.
In a brief interview with Teslarati, Shigaev, whose company is developing batteries that use aqueous (water-based) electrolytes, noted that while supercapacitors will likely not be involved in Tesla’s million-mile battery project, there are already a lot of local tasks in an electric vehicle that could benefit from the use of supercapacitors. Among these is smart air suspension, a feature that is currently used in the Model S and X and is expected for upcoming vehicles like the Cybertruck. But beyond this, the Geyser Batteries CEO mentioned that supercapacitors could also be utilized as a superior alternative to the 12V battery that Tesla uses for its vehicles today.
“The more stuff gets electrified, the more power you need to perform tasks. The most classical thing (that could benefit from supercapacitors) and the number one item for Tesla is the 12V battery. Supercapacitors can handle this task. If you have a high energy battery onboard, then this secondary circuit could be powered by a supercapacitor that is very efficient. It will even have an extremely long life cycle. Supercapacitors are lighter too, saving weight. And they tend to be smaller than a lead-acid battery,” Shigaev said.

Interestingly enough, the earliest versions of the original Tesla Roadster didn’t use a 12V battery. Instead, the company used a portion of the Roadster’s main lithium-ion battery pack to supply 12V for the vehicles’ accessories and lights. This did not prove ideal, however, and in 2010, Tesla switched to using a 12V battery for the Roadster 2.0. It should be noted that the 12V battery, which has been adopted in every vehicle since the Roadster 2.0, is used to keep systems such as emergency blinkers, airbags, seatbelt pre-tensioners, the MCU, and other functions operational even when a car’s main battery pack is compromised.
Being one of the few parts of the car that is still based on conventional automotive tech, the 12V battery in a Tesla tends to last only a few years. As noted by Tesla Tap, the 12V battery in a brand new Tesla could last about 3-4 years, but this could be reduced to as little as 1-2 years if the vehicle is driven frequently. This could cause annoyances among Tesla owners, especially since the 12V battery’s health could not be actively observed in the vehicle’s systems yet. Social media posts about 12V batteries in Teslas giving out are numerous, with some owners noting that it is the one aspect of the Tesla ownership experience that is still mildly infuriating.
With this in mind, the use of supercapacitors in place of the 12V battery could be pretty in-character for Tesla. Nevertheless, the Geyser CEO explained that using supercapacitors in place of the 12V battery would present some challenges as well. Among these is cost, since supercapacitors are notably more expensive than standard 12V lead-acid batteries. Yet despite this, the advantages they bring could justify their use, especially among flagship vehicles like the next-generation Roadster and the Plaid Model S and Model X.

“Supercapacitors have a main caveat. There are three drawbacks. First and foremost is energy density, which is ten times lower than lead-acid battery. Second is their price since currently, their price is astronomically larger. The third is discharge. If you leave it alone for almost one month, it would discharge completely. However, if you have an electric car and there’s a high energy battery in the car like a lithium-ion battery, that would be the power source for the vehicle,” Shigaev noted.
Other industry experts have suggested uses for Maxwell’s supercapacitors in Tesla’s electric cars in the past. Auto veteran and Munro & Associates Sr. Associate Mark Ellis previously noted that apart from dry electrode tech, Tesla could tap into Maxwell’s supercapacitors to improve its vehicles’ battery management systems.
“One of the issues with the battery is, when I step on the throttle hard, I’m pulling a lot of energy from the battery. And then, when I brake hard, I’m pulling a lot of energy out of the regen, but the batteries can’t take it fast enough. The batteries get really stressed when you try to pull it up too much, so if I had supercapacitors that I could use as a cushion; so when I need energy quickly, (I can) pull it from the supercapacitors and then fill the supercapacitors back up with the battery slowly; and then when I brake, I can capture more of that regen energy and do the supercapacitors faster. I think that just makes logical sense, because now all of a sudden I’ve got a sponge in front of my main energy source and I’m not stressing (the battery) so much,” Ellis said.
News
Tesla aims to combat common Full Self-Driving problem with new patent
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
Tesla is aiming to combat a common Full Self-Driving problem with a new patent.
One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.
Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.
Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.
Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.
The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”
Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.
This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.
CEO Elon Musk said during the Q2 Earnings Call:
“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”
Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.
Elon Musk
Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.
The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price.
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.
Delaware Supreme Court makes a decision
In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”
The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.
A hard-fought victory
As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.
The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.
Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.