News
Tesla’s carbon-wrapped motor to pave way for new Roadster improvements
Tesla CEO Elon Musk appears to have shared one of the key updates that would be rolled out to the next-generation Roadster, an all-electric supercar that’s expected to be the company’s undisputed halo car. In a series of posts on Twitter, Musk explained that some of the Model S Plaid’s key innovations could pave the way for unlocking even more power for the next-generation Roadster.
Musk’s updates came as a response to Tesla bull @ajtourville, who inquired if the carbon fiber sleeves of the Model S Plaid’s rotors are direct-wound or pressed-on. The Tesla CEO noted that with the Model S Plaid, “fiber is wound over rotor at high tension load.” He also noted that the “carbon sleeve must put (the) copper rotor in compression or it loosens at low temp due to differential thermal expansion.”
Main advantage of this is a much stronger EM field compared with a rotor that is held together by metal (usually high strength steel).
Other advantage is that rotor can go to higher RPM, as carbon sleeve (mostly) stops copper rotor from expanding due to radial acceleration.
— Elon Musk (@elonmusk) June 13, 2021
Musk highlighted that Tesla’s carbon-coated motor has several key advantages, one of which is a stronger electromagnetic field compared to a rotor held together by metal such as high strength steel. The rotors can also go to a higher RPM, as the carbon sleeve mostly stops the copper from expanding due to radial acceleration. In a later tweet, Musk noted that these innovations had given Tesla some ideas for increasing the torque and maximum RPM of the next-generation Roadster.
This would make the all-electric supercar into something even more impressive than its prototype. When it was unveiled in late 2017, Elon Musk announced that the next-generation Roadster would have a wheel torque of 10,000 Nm, which is already very impressive in its own right. With a higher maximum RPM, the next-generation Roadster’s production could offer some monstrous amounts of power. Together with its SpaceX-infused tech and 620-mile range, the Roadster could truly stand above the Model S Plaid, effectively justifying its expected base price of $200,000.
The Plaid carbon-wrapped motor is arguably the most advanced motor on Earth outside of maybe a lab somewhere. We have to keep some secrets!
We have a few ideas for increasing torque & max rpm even further for new Roadster. Definitely fun & exciting engineering ahead!
— Elon Musk (@elonmusk) June 13, 2021
The machines that enable the production of the Model S Plaid’s new electric motors were made possible by Tesla Automation. Interestingly enough, Tesla Grohmann Automation, which is located in Germany, has been undergoing a pretty extensive expansion, as indicated by reports from electric vehicle owners in the area. This expansion is expected to correspond to more activity in the facility, particularly as Gigafactory Berlin starts its local operations.
The next-generation Roadster is the spiritual successor of the car that started it all for Tesla. But while the original Roadster was based on the Lotus Elise, the new Roadster is built and designed from the ground up by the company. This paves the way for specs that would likely need to be seen to be believed, such as its 0-60 mph acceleration of 1.1 seconds with its SpaceX package.
Do you have anything to share with the Teslarati Team? We’d love to hear from you, email us at tips@teslarati.com.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.