Connect with us

News

Relativity Space’s first 3D-printed rocket goes vertical for launch debut

Published

on

Relativity Space’s first 3D-printed Terran 1 rocket has rolled out to the startup’s Florida pad and been raised vertical ahead of its launch debut.

Founded in 2015, the private Los Angeles-based spaceflight company shipped its first complete rocket prototype to Florida in June 2022. Prior to that major milestone, Relativity qualified Terran 1’s orbital second stage at leased facilities located at NASA’s Stennis Space Center in southwest Mississippi, and – alongside a nosecone and interstage – arrived at Cape Canaveral Space Force Station (CCSFS) more or less ready to fly.

The last six months have been almost exclusively dedicated to testing Terran 1’s larger and more powerful first stage (booster) as thoroughly as possible. Instead of building a dedicated booster test stand in Mississippi, Relativity chose to modify Terran 1’s lone LC-16 launch pad for the crucial task. Ultimately, the startup was able to complete a large amount of booster testing on the ground, significantly increasing the odds that Terran 1 will perform as expected when it lifts off for the first time.

Beginning with cryogenic proofing, propellant loading, ‘spin starts,’ and several shorter static fire tests, Relativity’s first Terran 1 booster test campaign culminated with two long-duration static fires in September 2022. The final 57 and 82-second static fires weren’t quite the “full mission duration” tests Relativity had hoped for, but the company concluded that the data gathered was enough to clear the booster for flight.

According to Ellis, one of the most important insights gained from those tests was into Terran 1’s uncharacteristically complex autogenous pressurization system – unprecedented for such a small rocket. Generally speaking, orbital-class rockets store helium gas in small ultra-high-pressure tanks (COPVs) and use helium to pressurize their propellant tanks as they are drained of propellant. Autogenous pressurization refers to an alternative in which a portion of a rocket’s liquid oxidizer and fuel are turned into hot gas and injected back into their respective tanks to pressurize them.

Advertisement

Helium is extremely expensive and an unrenewable resource. In theory, autogenous pressurization – at the cost of being significantly more complex and finicky – can also reduce the amount of dry mass reserved for tank pressurization. While Terran 1 wasn’t able to complete a full-duration static fire, the tests it did complete showed Relativity that its autogenous pressurization systems are unlikely to be a problem in flight, mostly eliminating a major source of uncertainty.

Following the final 82 or 88-second static fire, Relativity returned Terran 1’s booster to LC-16’s hangar and shifted its focus to fully assembling the two-stage rocket and finishing the launch pad. In early December, the company announced that it had fully assembled the first Terran 1. Days later, the rocket was installed on the pad’s “Transporter Erector.” The T/E responsible for transporting the rocket and raising it vertical, but it also needs to connect the rocket to ground systems (propellant, power, comms, etc.) and hold it down before liftoff.

On or around December 6th, Terran 1 rolled out to the pad and was raised vertical soon after. According to Ellis, all that stands between Terran 1 and its first launch is a short integrated static fire test and a launch license from the Federal Aviation Administration (FAA). It’s impossible to say how long the FAA will take, but it’s likely that Relativity will be technically ready to launch just a handful of weeks from now.

Beyond building a relativity impressive rocket, Relativity’s claim to fame is large-scale 3D printing. The startup says that the first Terran 1 rocket – booster, upper stage, fairing, engines, and all – is 85% 3D-printed by mass and the largest single 3D-printed object ever built. Terran 1 reportedly weighs around 9.3 tons (20,500 lb) empty; will measure around 33 meters (110 ft) tall and 2.3 meters (7.5 ft) wide; and will produce around 90 tons (~200,000 lbf) of thrust at liftoff. The rocket is designed to launch 1.25 tons (~2750 lb) to low Earth orbit for $12 million

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk shares unbelievable Starship Flight 10 landing feat

Flight 10’s Starship upper stage demonstrated impressive accuracy when it came to its target landing zone.

Published

on

Credit: SpaceX/X

SpaceX CEO Elon Musk recently shared an insane feat accomplished by Starship’s upper stage during its tenth test flight.

Despite the challenges it faced during its return trip to Earth, Flight 10’s Starship upper stage demonstrated impressive accuracy when it came to its target landing zone.

Against the odds

Musk’s update was shared on social media platform X. In a conversation about Starship upper stage’s return to Earth, Musk revealed that the upper stage splashed down just 3 meters (under 10 feet) from its intended target. Considering the size of the Starship upper stage and the ocean itself, achieving this accuracy was nothing short of insane.

Starship Flight 10 was a success as both the Super Heavy booster and Ship upper stage completed all their mission objectives. However, videos and images released by SpaceX showed the upper stage’s heat shield scorched golden-brown and parts of its aft skirt visibly missing. The flaps and other surfaces also bore signs of heavy stress from reentry.

SpaceX highlighted this in a post on X: “Starship made it through reentry with intentionally missing tiles, completed maneuvers to intentionally stress its flaps, had visible damage to its aft skirt and flaps, and still executed a flip and landing burn that placed it approximately 3 meters from its targeted splashdown point,” SpaceX noted.

Advertisement

A key milestone

The result stands in stark contrast to Starship’s earlier test flights this year, when all three prior upper-stage flights in 2025 ended in premature breakup before splashdown. Flight 10 not only marked the first successful splashdown of the year for the Starship upper stage, but it also delivered near-perfect precision despite its battered state, according to a Space.com report.

For SpaceX, this success is a critical proof point in developing a fully reusable launch system. A spacecraft capable of surviving severe reentry conditions and still landing within meters of its target underscores the robustness needed for future missions, including orbital payload deliveries and, eventually, landings on the Moon and Mars.

Continue Reading

News

New Tesla Model Y Performance launches from Giga Berlin

The vehicle is produced at Gigafactory Berlin and is available to order now in Europe and the Middle East.

Published

on

Credit: Tesla

It took some time, but the new Tesla Model Y Performance is finally here. The new Model Y Performance features a blend of aerodynamic improvements, upgraded interior comforts, and high range enabled by new battery cells. 

The updated Model Y Performance is produced at Gigafactory Berlin and is available to order now in Europe and the Middle East. First deliveries are expected in 1-2 months.

Key Model Y Improvements

The new Model Y Performance sharpens the vehicle’s design and driving dynamics while adding subtle interior refinements. The revised variant now delivers 0–60 mph in 3.3 seconds, slightly quicker than its predecessor’s 3.5 seconds, while offering an EPA-estimated 308 miles of range, just about 1% less than the non-performance Dual Motor All Wheel Drive variant. Top speed is listed at 155 mph.

The exterior of the new Model Y Performance features new front and rear fascias, along with a carbon fiber spoiler designed for greater downforce and reduced drag. Staggered wheels and tires provide improved steering precision and grip, while high-performance brakes offer enhanced pedal feel and better heat management. The ride is supported by adaptive suspension that adjusts damping based on road conditions, paired with unique drive modes tailored for high-speed performance. Ground clearance is listed at 6.1 inches, and weight is listed at 2,033 kilograms (4,482 pounds).

Tech and Interior

Inside, Tesla has added carbon fiber decor, expanded ambient lighting in the footwells and door pockets, and upgraded seating. The first-row sport seats now include power recline, power tilt, heating, ventilation, and powered thigh extensions for added support during cornering. Rear passengers receive perforated heated seats with power recline. A new 16-inch QHD center touchscreen anchors the cabin’s technology suite.

Advertisement

Additional upgrades include eight exterior cameras, with the refreshed design introducing a new forward-facing unit. The high-density battery pack also boosts charge capacity but also helps maintain range despite the Performance model’s added power output.

Continue Reading

Elon Musk

Elon Musk reveals when SpaceX will perform first-ever Starship catch

“Starship catch is probably flight 13 to 15, depending on how well V3 flights go,” Musk said.

Published

on

Credit: SpaceX

Elon Musk revealed when SpaceX would perform the first-ever catch attempt of Starship, its massive rocket that will one day take life to other planets.

On Tuesday, Starship aced its tenth test flight as SpaceX was able to complete each of its mission objectives, including a splashdown of the Super Heavy Booster in the Gulf, the deployment of eight Starlink simulators, and another splashdown of the ship in the Indian Ocean.

It was the first launch that featured a payload deployment:

SpaceX Starship Flight 10 was so successful, it’s breaking the anti-Musk narrative

SpaceX was transparent that it would not attempt to catch the Super Heavy Booster, something it has done on three previous occasions: Flight 5 on October 13, 2024, Flight 7 on January 16, and Flight 8 on March 6.

This time, it was not attempting to do so. However, there are bigger plans for the future, and Musk detailed them in a recent post on X, where he discussed SpaceX’s plans to catch Starship, which would be a monumental accomplishment.

Musk said the most likely opportunities for SpaceX to catch Starship itself would be Flight 13, Flight 14, and Flight 15, but it depends on “how well the V3 flights go.”

The Starship launched with Flight 10 was a V2, which is the same size as the subsequent V3 rocket but has a smaller payload-to-orbit rating and is less powerful in terms of initial thrust and booster thrust. Musk said there is only one more V2 rocket left to launch.

V3 will be the version flown through 2026, as V4, which will be the most capable Starship build SpaceX manufactures, is likely to be the first company ship to carry humans to space.

Musk said that SpaceX planned to “hopefully” attempt a catch of Starship in 2025. However, it appears that this will likely be pushed back to 2026 due to timing.

SpaceX will take Starship catch one step further very soon, Elon Musk confirms

SpaceX would need to launch the 11th and 12th test flights by the end of the year in order to get to Musk’s expected first catch attempt of Flight 13. It’s not unheard of, but the company will need to accelerate its launch rate as it has only had three test flights this year.

Continue Reading

Trending