News
Answering Elon Musk’s call for help to build Thailand’s cave rescue pod in 24 hours
On the morning of Friday, July 6, Andrew Branagh received a call that would put his company’s 30-year experience in the field to the test. Branagh, who serves as the CEO of Arcata-based Wing Inflatables, had been asked by Elon Musk’s engineering team from SpaceX to construct an inflatable escape pod for the 12 children and their coach who are currently stranded in an air pocket inside the sprawling Tham Luang Nang Non cave complex in Thailand. Knowing that time is of the essence, Branagh and his team got to work.
The stranded members of the Wild Boar Soccer Team have been stranded in the caves since June 23, after a casual excursion into the underground caverns turned into a pitch-black ordeal due to flash floods. The group of 13, comprised of boys aged 11-16 and their 25-year-old coach, were missing until this past Monday, when they were located by two UK divers. The children and their coach have been given food and survival supplies, and on Tuesday, a doctor and a nurse spent the night with them. While the group is safe for now, however, retrieving them is not easy, considering that they are located 2.5 miles away from the entrance to the caves. Parts of the cave systems are also underwater, which would force the children to dive into murky waters during their retrieval.
- Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]
- Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]
- Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]
- Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]
- Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]
Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]
In a tweet on Friday, Elon Musk posted a brief update on Twitter stating that SpaceX and Boring Co. engineers are headed to Thailand in order to see if they can be helpful to the government’s rescue efforts. That was the same day that Branagh woke up to a text and call from the SpaceX team. Branagh notes that the message was brief, but the request was clear.
“Elon has an idea, or our team does.”
Musk’s initial idea to rescue the trapped children is to use an inflatable tube. Considering Wing’s experience in the field, Branagh and his team went to work refining the idea. The result was a submersible “torpedo,” which could hold a person with an air tank and a breathing apparatus. The torpedo is designed to be towed by its front and back, and be sleek enough to be guided through the cave system’s trickiest sections. Branagh opted to utilize 30% of his company’s workforce for the fast-track effort, reducing his business’ usual output by half. The CEO’s gambit worked, and by 9:30 a.m. on Friday, a prototype was ready. Branagh noted that the first rescue pod, which is 7-feet-long, sealed with velcro, and inflatable with the passenger’s exhaled air, was a finished product. There were no throw-away units or re-dos. There was just not enough time.
By 1:00 p.m., Wing’s rescue pod was tested on the Arcata Community Pool, with a certified dive instructor and two individuals who do not know how to swim. The tests were encouraging, with both test individuals being able to breathe comfortably inside the rescue pod. Branagh had also been speaking with Musk and his engineering staff in a conference call.
“He (Elon) was very direct and clear on supporting getting a solution in place,” Branagh said.
By 5:15 p.m., the first set of Wing Inflatables rescue pods were ready to be transported from Arcata-Eureka airport in Northern CA.
Apart from the inflatable pods that the engineers from SpaceX and The Boring Company transported to Thailand on Friday, Musk and his team at LA are also designing a mini-submarine for the children. In a series of tweets over the weekend, Musk stated that the mini-sub would be small enough to fit through the contours of the cave and its hull will be made of the same material as the oxygen transfer tube of a Falcon rocket, making it extremely durable. The mini-sub would have four handles and hitch points for the front and rear, with two air tanks on both front and rear, allowing up to four tanks to be connected.
Given Chiang Rai airport hours, soonest we could’ve departed US was an hour ago, but cave now closed for diver rescue. Will continue testing in LA in case needed later or for somewhere else in future.
— Elon Musk (@elonmusk) July 8, 2018
Rescue efforts for the stranded children are already underway as of Sunday. For this rescue attempt, the children would have to dive using scuba gear into the waters with two experienced divers. Divers who will be conducting the retrieval of the soccer team are expected to spend 11 hours inside the caves, six hours heading to the children, and five hours going out. It remains unknown for now if the rescuers will be utilizing the rescue pods delivered by the SpaceX and Boring Co. team. Musk’s mini-sub continues testing in LA, just in case it’s needed for the cave rescue efforts.
News
Tesla rolls out new Supercharging safety feature in the U.S.
Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.
It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.
The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.
With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:
“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”
The feature was first spotted by Not a Tesla App.
This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.
For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.
Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.
This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.
News
LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.
Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.
Humanoid robot battery deals
LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.
China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.
LF Energy Solution vs rivals
According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.
LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.
News
Tesla receives approval for FSD Supervised tests in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.
Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market.
FSD Supervised testing in Sweden
Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.
Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted.
With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.
Tesla FSD Supervised Europe rollout
FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.
Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.
The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months.





