Connect with us

News

Answering Elon Musk’s call for help to build Thailand’s cave rescue pod in 24 hours

[Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]

Published

on

On the morning of Friday, July 6, Andrew Branagh received a call that would put his company’s 30-year experience in the field to the test. Branagh, who serves as the CEO of Arcata-based Wing Inflatables, had been asked by Elon Musk’s engineering team from SpaceX to construct an inflatable escape pod for the 12 children and their coach who are currently stranded in an air pocket inside the sprawling Tham Luang Nang Non cave complex in Thailand. Knowing that time is of the essence, Branagh and his team got to work.

The stranded members of the Wild Boar Soccer Team have been stranded in the caves since June 23, after a casual excursion into the underground caverns turned into a pitch-black ordeal due to flash floods. The group of 13, comprised of boys aged 11-16 and their 25-year-old coach, were missing until this past Monday, when they were located by two UK divers. The children and their coach have been given food and survival supplies, and on Tuesday, a doctor and a nurse spent the night with them. While the group is safe for now, however, retrieving them is not easy, considering that they are located 2.5 miles away from the entrance to the caves. Parts of the cave systems are also underwater, which would force the children to dive into murky waters during their retrieval.

Wing Inflatables’ rescue pods under construction. [Credit: Giovanna Castro Salas/Wing Inflatables via Mad River Union]

In a tweet on Friday, Elon Musk posted a brief update on Twitter stating that SpaceX and Boring Co. engineers are headed to Thailand in order to see if they can be helpful to the government’s rescue efforts. That was the same day that Branagh woke up to a text and call from the SpaceX team. Branagh notes that the message was brief, but the request was clear.

Advertisement

“Elon has an idea, or our team does.”

Musk’s initial idea to rescue the trapped children is to use an inflatable tube. Considering Wing’s experience in the field, Branagh and his team went to work refining the idea. The result was a submersible “torpedo,” which could hold a person with an air tank and a breathing apparatus. The torpedo is designed to be towed by its front and back, and be sleek enough to be guided through the cave system’s trickiest sections. Branagh opted to utilize 30% of his company’s workforce for the fast-track effort, reducing his business’ usual output by half. The CEO’s gambit worked, and by 9:30 a.m. on Friday, a prototype was ready. Branagh noted that the first rescue pod, which is 7-feet-long, sealed with velcro, and inflatable with the passenger’s exhaled air, was a finished product. There were no throw-away units or re-dos. There was just not enough time.

By 1:00 p.m., Wing’s rescue pod was tested on the Arcata Community Pool, with a certified dive instructor and two individuals who do not know how to swim. The tests were encouraging, with both test individuals being able to breathe comfortably inside the rescue pod. Branagh had also been speaking with Musk and his engineering staff in a conference call.

“He (Elon) was very direct and clear on supporting getting a solution in place,” Branagh said.

By 5:15 p.m., the first set of Wing Inflatables rescue pods were ready to be transported from Arcata-Eureka airport in Northern CA.

Advertisement

Apart from the inflatable pods that the engineers from SpaceX and The Boring Company transported to Thailand on Friday, Musk and his team at LA are also designing a mini-submarine for the children. In a series of tweets over the weekend, Musk stated that the mini-sub would be small enough to fit through the contours of the cave and its hull will be made of the same material as the oxygen transfer tube of a Falcon rocket, making it extremely durable. The mini-sub would have four handles and hitch points for the front and rear, with two air tanks on both front and rear, allowing up to four tanks to be connected.

Rescue efforts for the stranded children are already underway as of Sunday. For this rescue attempt, the children would have to dive using scuba gear into the waters with two experienced divers. Divers who will be conducting the retrieval of the soccer team are expected to spend 11 hours inside the caves, six hours heading to the children, and five hours going out. It remains unknown for now if the rescuers will be utilizing the rescue pods delivered by the SpaceX and Boring Co. team. Musk’s mini-sub continues testing in LA, just in case it’s needed for the cave rescue efforts.

Advertisement

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading