Connect with us

News

DeepSpace: Europe reveals Mars sample return spacecraft as SpaceX builds Starships

Published

on

The European Space Agency (ESA) revealed a concept for a spacecraft that would work alongside NASA to return samples of Martian soil to Earth. (ESA)

Eric Ralph · May 28th, 2019

Welcome to the latest edition of DeepSpace! Each week, Teslarati space reporter Eric Ralph hand-crafts this newsletter to give you a breakdown of what’s happening in the space industry and what you need to know. To receive this newsletter (and others) directly and join our member-only Slack group, give us a 3-month trial for just $5.


On May 27th, the European Space Agency (ESA) published updated renders of a proposed spacecraft, called the Earth Return Orbiter (ERO). ERO would be the last of four critical elements of a joint NASA-ESA Mars sample return mission, meant to return perhaps 1-5 kg (2-11 lb) of Martian samples to scientists on Earth. In a best-case scenario, such a sample return is unlikely to happen before the tail-end of the 2020s and will probably slip well into the 2030s, barring any unexpected windfalls of funding or political support.

Enter SpaceX, a private American company developing Starship/Super Heavy – a massive, next-generation launch vehicle – with the goal of landing dozens of tons of cargo and just as many humans on Mars as few as 5-10 years from now. The radically different approaches of SpaceX and NASA/ESA are bound to produce equally different results, while both are expected to cost no less than $5B-$10B to be fully realized. What gives?




The high price of guaranteed success

  • As proposed, the Mars sample return mission will be an extraordinary technical challenge.
    • At a minimum, the current approach involves sending a single-stage-to-orbit (SSTO) rocket from Earth to Mars, landing the SSTO with extreme accuracy on the back of a new Mars lander, deploying a small rover to gather the sample container, loading that container onto the tiny rocket, launching said rocket into Mars orbit, grabbing the sample with large orbiter launched from Earth, and returning said sample to Earth where it will reenter the atmosphere and be safely recovered.
  • This downright Rube Golberg machine-esque architecture is nevertheless the best currently available with current mindsets and hardware. It’s also likely the only way NASA or ESA will independently acquire samples of Mars within the next few decades, barring radical changes to both the mindsets and technologies familiar and available to the deeply bureaucratic spaceflight agencies.
  • However, this is by no means an attempt to downplay the demonstrated expertise and capabilities of the space agencies and their go-to contractors. Both ESA and NASA have a decades-long heritage of spectacular achievements in robotic space exploration, reaching – however briefly, in some cases – almost every major planet and moon in the solar system.
    • The NASA-supported Jet Propulsion Laboratory (JPL) remains a world-leading expert of both designing, building, and landing large, capable, and long-lived rovers/landers on the surface of Mars. JPL also has a track record of incredible success with space-based orbiters, including Cassini (Saturn), Magellan (Venus), Galileo (Jupiter), Voyager (most planets, now in interstellar space), Stardust (comet sample return), Mars Reconnaissance Orbiter (MRO, Mars orbiter) and more.
  • This success, however, can often come with extreme costs. NASA’s next Mars rover – essentially a modified copy of the Curiosity rover currently operating on Mars and a critical component of the proposed sample return – is likely to cost more than $2B, while Curiosity cost ~$2.5B. The Cassini Saturn orbiter cost around ~$3.5B for 15 years of scientific productivity. ESA’s Rosetta/Philae comet rendezvous cost at least $2B total. In the scheme of things, it would be hard to think of a more inspiring way to spend that money, but the fact remains that these missions are extremely expensive.



High risk, high reward

  • The price of missions like those above may, in fact, be close to their practical minimum, at least relative to the expectations of those footing the bill. However, it’s highly likely that similar results could be achieved on far tighter budgets, another way to say that far more returns could potentially be derived from the same investment.
    • The easiest way to explain this lies in the fact that the governments sponsoring and funding ESA and NASA have grown almost dysfunctionally risk-averse, to the extent that failure really isn’t an option in the modern era. Stakeholders – often elected representatives – expect success and often demand a guaranteed return on their support before choosing to fight for a given program’s funding.
    • As it turns out, an unwillingness to accept more than a minute amount of risk is not particularly compatible with affordably attempting to do things that are technically challenging and have often never been done before. That happens to be a great summary of spaceflight.
    • As risk aversion and the need for guaranteed success grew hand-in-hand, a sort of paradox formed. As politicians strove to ensure that space agency funding was efficiently used, space agencies became far more conservative (minimizing results and the potential for leaps forward) and the cost of complex, capable spacecraft grew dramatically.
    • The end result: spacecraft that are consistently reliable, high-performance, derivative, and terrifyingly expensive.



  • SpaceX is in many ways an anathema of the low-risk, medium-reward, high-cost approach that government space agencies and their dependent contractors have gravitated towards over the last 40-50 years. Instead, SpaceX accepts medium to high risk to attain great rewards at a cost that space agencies like NASA and ESA are often unable to accept as possible after decades of conservatism.
    • This is the main reason that it’s possible that NASA/ESA and SpaceX will both succeed in accomplishing goals at a dramatically disproportionate scale with roughly the same amount of funding.
    • If NASA/ESA bite the bullet and begin to seriously fund their triple-launch Mars Sample Return program, the missions will take a decade or longer and cost something like $5 million per gram of soil returned to Earth, but success will be all but guaranteed.
    • Both SpaceX’s Starship/Super Heavy and Mars colonization development programs run significant risks of hitting major obstacles, suffering catastrophic failures, and could even result in the death of crew members aboard the first attempted missions to Mars.
    • For that accepted risk, the rewards could be unfathomable and the costs revolutionary. SpaceX could very well beat the combined might of ESA and NASA to return large samples of Martian soil, rock, and water to Earth, all while launching ~100,000 kg into Martian orbit instead of the sample return’s ~10 kg.
    • In a best-case scenario, SpaceX could land the first uncrewed Starship on Mars as early as 2022 or 2024. Barring some unforeseen catastrophe or the company’s outright collapse, that first uncrewed Mars landing might happen as late as the early 2030s, around the same time as NASA and ESA’s ~10kg of Mars samples will likely be reentering Earth’s atmosphere.
  • Regardless of which approach succeeds first, space exploration fans and space scientists will have a spectacular amount of activity to be excited about over the next 10-20 years.
Thanks for being a Teslarati Reader! Become a member today to receive an issue of DeepSpace each week!

– Eric

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

GM CEO Mary Barra says she told Biden to give Tesla and Musk EV credit

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Published

on

General Motors CEO Mary Barra said in a new interview on Wednesday that she told President Joe Biden to credit Tesla and its CEO, Elon Musk, for the widespread electric vehicle transition.

She said she told Biden this after the former President credited her and GM for leading EV efforts in the United States.

During an interview at the New York Times Dealbook Summit with Andrew Ross Sorkin, Barra said she told Biden that crediting her was essentially a mistake, and that Musk and Tesla should have been explicitly mentioned (via Business Insider):

“He was crediting me, and I said, ‘Actually, I think a lot of that credit goes to Elon and Tesla…You know me, Andrew. I don’t want to take credit for things.”

Back in 2021, President Biden visited GM’s “Factory Zero” plant in Detroit, which was the centerpiece of the company’s massive transition to EVs. The former President went on to discuss the EV industry, and claimed that GM and Barra were the true leaders who caused the change:

“In the auto industry, Detroit is leading the world in electric vehicles. You know how critical it is? Mary, I remember talking to you way back in January about the need for America to lead in electric vehicles. I can remember your dramatic announcement that by 2035, GM would be 100% electric. You changed the whole story, Mary. You did, Mary. You electrified the entire automotive industry. I’m serious. You led, and it matters.”

People were baffled by the President’s decision to highlight GM and Barra, and not Tesla and Musk, who truly started the transition to EVs. GM, Ford, and many other companies only followed in the footsteps of Tesla after it started to take market share from them.

Advertisement
-->

Elon Musk and Tesla try to save legacy automakers from Déjà vu

Musk would eventually go on to talk about Biden’s words later on:

They have so much power over the White House that they can exclude Tesla from an EV Summit. And, in case the first thing, in case that wasn’t enough, then you have President Biden with Mary Barra at a subsequent event, congratulating Mary for having led the EV revolution.”

In Q4 2021, which was shortly after Biden’s comments, Tesla delivered 300,000 EVs. GM delivered just 26.

Advertisement
-->
Continue Reading

News

Tesla Full Self-Driving shows confident navigation in heavy snow

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.

Published

on

Credit: Grok

Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.

The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.

Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when

However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.

One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.

Advertisement
-->

So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:

Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.

We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.

Continue Reading

News

Tesla hosts Rome Mayor for first Italian FSD Supervised road demo

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.

Published

on

Credit: @andst7/X

Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration. 

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.

Rome officials experience FSD Supervised

Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.

The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.

Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.

Advertisement
-->

Path to European rollout

Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.

Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.

Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”

Continue Reading