Connect with us

News

DeepSpace: Europe reveals Mars sample return spacecraft as SpaceX builds Starships

Published

on

The European Space Agency (ESA) revealed a concept for a spacecraft that would work alongside NASA to return samples of Martian soil to Earth. (ESA)

Eric Ralph · May 28th, 2019

Welcome to the latest edition of DeepSpace! Each week, Teslarati space reporter Eric Ralph hand-crafts this newsletter to give you a breakdown of what’s happening in the space industry and what you need to know. To receive this newsletter (and others) directly and join our member-only Slack group, give us a 3-month trial for just $5.


On May 27th, the European Space Agency (ESA) published updated renders of a proposed spacecraft, called the Earth Return Orbiter (ERO). ERO would be the last of four critical elements of a joint NASA-ESA Mars sample return mission, meant to return perhaps 1-5 kg (2-11 lb) of Martian samples to scientists on Earth. In a best-case scenario, such a sample return is unlikely to happen before the tail-end of the 2020s and will probably slip well into the 2030s, barring any unexpected windfalls of funding or political support.

Enter SpaceX, a private American company developing Starship/Super Heavy – a massive, next-generation launch vehicle – with the goal of landing dozens of tons of cargo and just as many humans on Mars as few as 5-10 years from now. The radically different approaches of SpaceX and NASA/ESA are bound to produce equally different results, while both are expected to cost no less than $5B-$10B to be fully realized. What gives?




The high price of guaranteed success

  • As proposed, the Mars sample return mission will be an extraordinary technical challenge.
    • At a minimum, the current approach involves sending a single-stage-to-orbit (SSTO) rocket from Earth to Mars, landing the SSTO with extreme accuracy on the back of a new Mars lander, deploying a small rover to gather the sample container, loading that container onto the tiny rocket, launching said rocket into Mars orbit, grabbing the sample with large orbiter launched from Earth, and returning said sample to Earth where it will reenter the atmosphere and be safely recovered.
  • This downright Rube Golberg machine-esque architecture is nevertheless the best currently available with current mindsets and hardware. It’s also likely the only way NASA or ESA will independently acquire samples of Mars within the next few decades, barring radical changes to both the mindsets and technologies familiar and available to the deeply bureaucratic spaceflight agencies.
  • However, this is by no means an attempt to downplay the demonstrated expertise and capabilities of the space agencies and their go-to contractors. Both ESA and NASA have a decades-long heritage of spectacular achievements in robotic space exploration, reaching – however briefly, in some cases – almost every major planet and moon in the solar system.
    • The NASA-supported Jet Propulsion Laboratory (JPL) remains a world-leading expert of both designing, building, and landing large, capable, and long-lived rovers/landers on the surface of Mars. JPL also has a track record of incredible success with space-based orbiters, including Cassini (Saturn), Magellan (Venus), Galileo (Jupiter), Voyager (most planets, now in interstellar space), Stardust (comet sample return), Mars Reconnaissance Orbiter (MRO, Mars orbiter) and more.
  • This success, however, can often come with extreme costs. NASA’s next Mars rover – essentially a modified copy of the Curiosity rover currently operating on Mars and a critical component of the proposed sample return – is likely to cost more than $2B, while Curiosity cost ~$2.5B. The Cassini Saturn orbiter cost around ~$3.5B for 15 years of scientific productivity. ESA’s Rosetta/Philae comet rendezvous cost at least $2B total. In the scheme of things, it would be hard to think of a more inspiring way to spend that money, but the fact remains that these missions are extremely expensive.



High risk, high reward

  • The price of missions like those above may, in fact, be close to their practical minimum, at least relative to the expectations of those footing the bill. However, it’s highly likely that similar results could be achieved on far tighter budgets, another way to say that far more returns could potentially be derived from the same investment.
    • The easiest way to explain this lies in the fact that the governments sponsoring and funding ESA and NASA have grown almost dysfunctionally risk-averse, to the extent that failure really isn’t an option in the modern era. Stakeholders – often elected representatives – expect success and often demand a guaranteed return on their support before choosing to fight for a given program’s funding.
    • As it turns out, an unwillingness to accept more than a minute amount of risk is not particularly compatible with affordably attempting to do things that are technically challenging and have often never been done before. That happens to be a great summary of spaceflight.
    • As risk aversion and the need for guaranteed success grew hand-in-hand, a sort of paradox formed. As politicians strove to ensure that space agency funding was efficiently used, space agencies became far more conservative (minimizing results and the potential for leaps forward) and the cost of complex, capable spacecraft grew dramatically.
    • The end result: spacecraft that are consistently reliable, high-performance, derivative, and terrifyingly expensive.



  • SpaceX is in many ways an anathema of the low-risk, medium-reward, high-cost approach that government space agencies and their dependent contractors have gravitated towards over the last 40-50 years. Instead, SpaceX accepts medium to high risk to attain great rewards at a cost that space agencies like NASA and ESA are often unable to accept as possible after decades of conservatism.
    • This is the main reason that it’s possible that NASA/ESA and SpaceX will both succeed in accomplishing goals at a dramatically disproportionate scale with roughly the same amount of funding.
    • If NASA/ESA bite the bullet and begin to seriously fund their triple-launch Mars Sample Return program, the missions will take a decade or longer and cost something like $5 million per gram of soil returned to Earth, but success will be all but guaranteed.
    • Both SpaceX’s Starship/Super Heavy and Mars colonization development programs run significant risks of hitting major obstacles, suffering catastrophic failures, and could even result in the death of crew members aboard the first attempted missions to Mars.
    • For that accepted risk, the rewards could be unfathomable and the costs revolutionary. SpaceX could very well beat the combined might of ESA and NASA to return large samples of Martian soil, rock, and water to Earth, all while launching ~100,000 kg into Martian orbit instead of the sample return’s ~10 kg.
    • In a best-case scenario, SpaceX could land the first uncrewed Starship on Mars as early as 2022 or 2024. Barring some unforeseen catastrophe or the company’s outright collapse, that first uncrewed Mars landing might happen as late as the early 2030s, around the same time as NASA and ESA’s ~10kg of Mars samples will likely be reentering Earth’s atmosphere.
  • Regardless of which approach succeeds first, space exploration fans and space scientists will have a spectacular amount of activity to be excited about over the next 10-20 years.
Thanks for being a Teslarati Reader! Become a member today to receive an issue of DeepSpace each week!

– Eric

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading