Connect with us

News

DeepSpace: Europe reveals Mars sample return spacecraft as SpaceX builds Starships

Published

on

The European Space Agency (ESA) revealed a concept for a spacecraft that would work alongside NASA to return samples of Martian soil to Earth. (ESA)

Eric Ralph · May 28th, 2019

Welcome to the latest edition of DeepSpace! Each week, Teslarati space reporter Eric Ralph hand-crafts this newsletter to give you a breakdown of what’s happening in the space industry and what you need to know. To receive this newsletter (and others) directly and join our member-only Slack group, give us a 3-month trial for just $5.


On May 27th, the European Space Agency (ESA) published updated renders of a proposed spacecraft, called the Earth Return Orbiter (ERO). ERO would be the last of four critical elements of a joint NASA-ESA Mars sample return mission, meant to return perhaps 1-5 kg (2-11 lb) of Martian samples to scientists on Earth. In a best-case scenario, such a sample return is unlikely to happen before the tail-end of the 2020s and will probably slip well into the 2030s, barring any unexpected windfalls of funding or political support.

Enter SpaceX, a private American company developing Starship/Super Heavy – a massive, next-generation launch vehicle – with the goal of landing dozens of tons of cargo and just as many humans on Mars as few as 5-10 years from now. The radically different approaches of SpaceX and NASA/ESA are bound to produce equally different results, while both are expected to cost no less than $5B-$10B to be fully realized. What gives?




The high price of guaranteed success

  • As proposed, the Mars sample return mission will be an extraordinary technical challenge.
    • At a minimum, the current approach involves sending a single-stage-to-orbit (SSTO) rocket from Earth to Mars, landing the SSTO with extreme accuracy on the back of a new Mars lander, deploying a small rover to gather the sample container, loading that container onto the tiny rocket, launching said rocket into Mars orbit, grabbing the sample with large orbiter launched from Earth, and returning said sample to Earth where it will reenter the atmosphere and be safely recovered.
  • This downright Rube Golberg machine-esque architecture is nevertheless the best currently available with current mindsets and hardware. It’s also likely the only way NASA or ESA will independently acquire samples of Mars within the next few decades, barring radical changes to both the mindsets and technologies familiar and available to the deeply bureaucratic spaceflight agencies.
  • However, this is by no means an attempt to downplay the demonstrated expertise and capabilities of the space agencies and their go-to contractors. Both ESA and NASA have a decades-long heritage of spectacular achievements in robotic space exploration, reaching – however briefly, in some cases – almost every major planet and moon in the solar system.
    • The NASA-supported Jet Propulsion Laboratory (JPL) remains a world-leading expert of both designing, building, and landing large, capable, and long-lived rovers/landers on the surface of Mars. JPL also has a track record of incredible success with space-based orbiters, including Cassini (Saturn), Magellan (Venus), Galileo (Jupiter), Voyager (most planets, now in interstellar space), Stardust (comet sample return), Mars Reconnaissance Orbiter (MRO, Mars orbiter) and more.
  • This success, however, can often come with extreme costs. NASA’s next Mars rover – essentially a modified copy of the Curiosity rover currently operating on Mars and a critical component of the proposed sample return – is likely to cost more than $2B, while Curiosity cost ~$2.5B. The Cassini Saturn orbiter cost around ~$3.5B for 15 years of scientific productivity. ESA’s Rosetta/Philae comet rendezvous cost at least $2B total. In the scheme of things, it would be hard to think of a more inspiring way to spend that money, but the fact remains that these missions are extremely expensive.



High risk, high reward

  • The price of missions like those above may, in fact, be close to their practical minimum, at least relative to the expectations of those footing the bill. However, it’s highly likely that similar results could be achieved on far tighter budgets, another way to say that far more returns could potentially be derived from the same investment.
    • The easiest way to explain this lies in the fact that the governments sponsoring and funding ESA and NASA have grown almost dysfunctionally risk-averse, to the extent that failure really isn’t an option in the modern era. Stakeholders – often elected representatives – expect success and often demand a guaranteed return on their support before choosing to fight for a given program’s funding.
    • As it turns out, an unwillingness to accept more than a minute amount of risk is not particularly compatible with affordably attempting to do things that are technically challenging and have often never been done before. That happens to be a great summary of spaceflight.
    • As risk aversion and the need for guaranteed success grew hand-in-hand, a sort of paradox formed. As politicians strove to ensure that space agency funding was efficiently used, space agencies became far more conservative (minimizing results and the potential for leaps forward) and the cost of complex, capable spacecraft grew dramatically.
    • The end result: spacecraft that are consistently reliable, high-performance, derivative, and terrifyingly expensive.



  • SpaceX is in many ways an anathema of the low-risk, medium-reward, high-cost approach that government space agencies and their dependent contractors have gravitated towards over the last 40-50 years. Instead, SpaceX accepts medium to high risk to attain great rewards at a cost that space agencies like NASA and ESA are often unable to accept as possible after decades of conservatism.
    • This is the main reason that it’s possible that NASA/ESA and SpaceX will both succeed in accomplishing goals at a dramatically disproportionate scale with roughly the same amount of funding.
    • If NASA/ESA bite the bullet and begin to seriously fund their triple-launch Mars Sample Return program, the missions will take a decade or longer and cost something like $5 million per gram of soil returned to Earth, but success will be all but guaranteed.
    • Both SpaceX’s Starship/Super Heavy and Mars colonization development programs run significant risks of hitting major obstacles, suffering catastrophic failures, and could even result in the death of crew members aboard the first attempted missions to Mars.
    • For that accepted risk, the rewards could be unfathomable and the costs revolutionary. SpaceX could very well beat the combined might of ESA and NASA to return large samples of Martian soil, rock, and water to Earth, all while launching ~100,000 kg into Martian orbit instead of the sample return’s ~10 kg.
    • In a best-case scenario, SpaceX could land the first uncrewed Starship on Mars as early as 2022 or 2024. Barring some unforeseen catastrophe or the company’s outright collapse, that first uncrewed Mars landing might happen as late as the early 2030s, around the same time as NASA and ESA’s ~10kg of Mars samples will likely be reentering Earth’s atmosphere.
  • Regardless of which approach succeeds first, space exploration fans and space scientists will have a spectacular amount of activity to be excited about over the next 10-20 years.
Thanks for being a Teslarati Reader! Become a member today to receive an issue of DeepSpace each week!

– Eric

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s new Holiday perk is timed perfectly to make FSD a household name

Tesla AI4 owners get FSD (Supervised) through Christmas, New Year’s Eve and well into the post-holiday travel season.

Published

on

Credit: Grok Imagine

Tesla quietly rolled out a free Full Self-Driving (Supervised) trial for roughly 1.5 million HW4 owners in North America who never bought the package, and the timing could very well be genius. 

As it turns out, the trial doesn’t end after 30 days. Instead, it expires January 8, 2026, meaning owners get FSD (Supervised) through Christmas, New Year’s Eve and well into the post-holiday travel season. This extended window positions the feature for maximum word-of-mouth exposure.

A clever holiday gift

Tesla watcher Sawyer Merritt first spotted the detail after multiple owners shared screenshots showing the trial expiring on January 8. He confirmed with affected users that none had active FSD subscriptions before the rollout. He also observed that Tesla never called the promotion a “30-day trial,” as the in-car message simply reads “You’re Getting FSD (Supervised) For the Holidays,” which technically runs until after the new year.

The roughly 40-day period covers peak family travel and gatherings, giving owners ample opportunity to showcase the latest FSD V14’s capabilities on highway trips, crowded parking lots and neighborhood drives. With relatives riding along, hands-off highway driving and automatic lane changes could become instant conversation starters.

Rave reviews for FSD V14 highlight demo potential

FSD has been receiving positive reviews from users as of late. Following the release of FSD v14.2.1, numerous owners praised the update for its smoothness and reliability. Tesla owner @LactoseLunatic called it a “huge leap forward from version 14.1.4,” praising extreme smoothness, snappy lane changes and assertive yet safe behavior that allows relaxed monitoring. 

Advertisement
-->

Another Tesla owner, @DevinOlsenn, drove 600 km without disengagements, noting his wife now defaults to FSD for daily use due to its refined feel. Sawyer Merritt also tested FSD V14.2.1 in snow on unplowed New Hampshire roads, and the system stayed extra cautious without hesitation. Longtime FSD tester Chuck Cook highlighted improved sign recognition in school zones, showing better dynamic awareness. These reports of fewer interventions and a more “sentient” drive could turn family passengers into advocates, fueling subscriptions come January.

Continue Reading

Elon Musk

Elon Musk predicts AI and robotics could make work “optional” within 20 years

Speaking on entrepreneur Nikhil Kamath’s podcast, Musk predicted that machines will soon handle most forms of labor, leaving humans to work only if they choose to.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

Elon Musk stated that rapid advances in artificial intelligence and robotics could make traditional work unnecessary within two decades. 

Speaking on entrepreneur Nikhil Kamath’s podcast, Musk predicted that machines will soon handle most forms of labor, leaving humans to work only if they choose to.

Work as a “hobby”

During the discussion, Musk said the accelerating capability of AI systems and general-purpose robots will eventually cover all essential tasks, making human labor a choice rather than an economic requirement. “In less than 20 years, working will be optional. Working at all will be optional. Like a hobby,” Musk said.

When Kamath asked whether this future is driven by massive productivity growth, Musk agreed, noting that people will still be free to work if they enjoy the routine or the challenge. He compared future employment to home gardening, as it is something people can still do for personal satisfaction even if buying food from a store is far easier

“Optional” work in the future

Elon Musk acknowledged the boldness of his claim and joked that people might look back in 20 years and say he was wrong. That being said, the CEO noted that such a scenario could even happen sooner than his prediction, at least if one were to consider the pace of the advancements in AI and robotics. 

Advertisement
-->

“Obviously people can play this back in 20 years and say, ‘Look, Elon made this ridiculous prediction and it’s not true,’ but I think it will turn out to be true, that in less than 20 years, maybe even as little as ten or 15 years, the advancements in AI and robotics will bring us to the point where working is optional,” Musk said. 

Elon Musk’s comments echo his previous sentiments at Tesla’s 2025 Annual Shareholder Meeting, where he noted that Optimus could ultimately eliminate poverty. He also noted that robots like Optimus could eventually provide people worldwide with the best medical care.

Continue Reading

Elon Musk

Elon Musk reiterates why Tesla will never make an electric motorcycle

Tesla CEO Elon Musk preemptively shut down speculations about a Tesla road bike once more.

Published

on

Tesla CEO Elon Musk preemptively shut down speculations about a Tesla road bike once more, highlighting that the electric vehicle maker has no plans to enter the electric motorcycle market.  

Musk posted his clarification in a post on X.

Musk’s reply to a fun AI video

X user @Moandbhr posted an AI video featuring the Tesla CEO on the social media platform, captioning it with “Mr. Elon Musk Just Revealed the Game-Changing Tesla Motorcycle.” The short clip depicted Musk approaching a sleek, single-wheeled vehicle, stepping onto it, and gliding off into the distance amid cheers. The fun video received a lot of traction on X, gaining 3.1 million views as of writing. 

Musk replied to the post, stating that a Tesla motorcycle is not going to happen. “Never happening, as we can’t make motorcycles safe. For Community Notes, my near death experience was on a road bike. Dirt bikes are safe if you ride carefully, as you can’t be smashed by a truck,” Musk wrote in his reply. 

Musk’s Past Comments on Two-Wheelers

Musk also detailed his reservations about motorcycles in a December 2019 X post while responding to questions about Tesla’s potential ATV. At the time, he responded positively to an electric ATV, though he also opposed the idea of a Tesla road-going motorcycle. Musk did state that electric dirt bikes might be cool, since they do not operate in areas where large vehicles like Class 8 trucks are present. 

Advertisement
-->

“Electric dirt bikes would be cool too. We won’t do road bikes, as too dangerous. I was hit by a truck & almost died on one when I was 17,” Musk wrote in his post. 

Considering Musk’s comments about dirt bikes, however, perhaps Tesla would eventually offer a road bike as a recreational vehicle. Such a two-wheeler would be a good fit for the Cybertruck, as well as future products like the Robovan, which could be converted into an RV.

Continue Reading