News
Lithium Mining is a Hot Topic In Nevada Thanks to Tesla
Lithium mining is suddenly a hot topic in Nevada, where a local state senator is up in arms about a deal to import lithium from Mexico. Other sources exist.
Lithium mining has become a hot topic in Nevada largely because of Tesla’s interest in sourcing lithium hydroxide, one of the main ingredients needed for Gigafactory scale production of lithium-ion batteries.
Tesla announced it had signed a deal with Canadian company Bacanora and British company Rare Earth Minerals towards the end of August. Bacanora is a minerals explorer, while Rare Earth Minerals owns Sonora Lithium Project. That partnership is designed to develop a “low-cost”, “sustainable” mining project in Northern Mexico based on clay deposits found in the region.
The Sonora mine does not exist yet, but could yield between 35,000 and 50,000 tons of lithium deposits annually. The deal will be extended and scaled up contingent on the mine’s ability to meet Tesla’s forecasts and actual output from its Gigafactory. The two Sonora project partners will need to find debt or equity to finance the operation and Tesla is permitted under the deal to participate in financing activities.
The state of Nevada has agreed to give Tesla almost a half billion dollars in tax incentives in order to lure the Gigafactory to the site north of Reno, which seems little enough considering the increase in economic activity the factory will bring to the state. But now, a Nevada politician, Democrat state senator Tick Segerblom, has tweeted, “Tesla to get lithium from Mexico – where’s Trump when you need him?”
tesla to get lithium from mexico – where's trump when we need him? $TSLA http://t.co/8NGT7OgjXp via @WSJ
— Tick Segerblom (@tsegerblom) August 28, 2015
That got the Las Vegas Sun involved. They contacted Elon Musk, who tweeted back that press interest in the story was “unwarranted” as the lithium deal was “not exclusive” and had “many contingencies”. He said that Tesla would “definitely” be interested in talking to local suppliers of lithium feedstocks. According to the Sun’s sources, developing lithium mines in the US is a lengthy process taking as much as 10 years, while lithium mining operations already located in Nevada are either too small or nearing the end of their planned lifetime.
@ScottLucasNV Lithium deal is not exclusive & has many contingencies. The press on this matter is unwarranted.
— Elon Musk (@elonmusk) September 2, 2015
Now up pops Nevada Sunrise Gold Corporation, which apparently is a played out gold mining operation. It announced on September 2nd that it has “entered into a letter agreement for an option to purchase” a site in Esmeralda County, which is in Nevada’s Clayton Valley. The company believes that area could hold lithium brine deposits in subterranean aquifers, based upon studies and reports made of the local area.
Meanwhile, researchers at the University of Wyoming report they have discovered an enormous supply of lithium at the Rock Springs Uplift, a geological feature in southwest Wyoming. Initial tests indicate the lithium-rich brine from a 25-square-mile area could contain 228,000 tons of the stuff. That’s enough to meet annual U.S. demand and is twice the amount available at Silver Peak in Nevada, which is the biggest domestic lithium producer today.
What has the University of Washington team excited is that the lithium at the Rock Springs Uplift can be processed more cheaply than the lithium found at other locations, due to a number of factors.
First, extracting the lithium from brine requires large quantities of soda ash (sodium carbonate). The Rock Springs Uplift site is located within 30 miles of the world’s largest industrial soda ash supplies, so the cost of transporting it to the production area will be minimal.
Second, magnesium must be removed from brine before it can be used for lithium recovery and that can be an expensive process. The brine from the Rock Springs Uplift reservoirs is lower in magnesium than at other sites. Less magnesium means less money to remove it.
Third, the brine must be heated and pressurized to release the lithium it contains. Because the Rock Springs Uplift brine is far underground, it is already at a higher pressure and temperature than brine at existing lithium operations. That factor may eliminate an expensive step in the process, resulting in significant cost savings.
The Chinese thought they had cornered the market for lithium when they locked up rights to much of the world’s lithium supply located in Bolivia a decade ago. But apparently, the demand has created interest in new sources of supply. Hopefully, all this interest in lithium will spur competition which could lead to lower prices. And that could spell lower battery prices for the electric cars and electrical storage batteries of the future.
Source: PV-Tech
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
