Connect with us

News

Meteorites give new insights into Martian water

A view of Mars. Credit: NASA/JPL-Caltech

Published

on

Mars is a dry, desert world devoid of any life (that we know of). But once upon a time, that wasn’t the case. Data collected by the robotic emissaries we’ve sent to explore the planet on our behalf indicate that the red planet was once a lush and wet world.

However, scientists are still trying to piece together Martian history to understand what happened to the planet’s water. While we know much of it was lost when the planet’s atmosphere was stripped away, what we don’t know is where the water originated from. Researchers uncovered a crucial clue in Martian meteorites found here on Earth.

“A lot of people have been trying to figure out Mars’ water history,” Jessica Barnes, an assistant professor of planetary sciences in the University of Arizona Lunar and Planetary Laboratory, said in a statement. “Like, where did water come from? How long was it in the crust (surface) of Mars? Where did Mars’ interior water come from? What can water tell us about how Mars formed and evolved?”

A view of the Northwest Africa 7034 meteorite (aka Black Beauty). Credit: Institute of Meteoritics UNM

Like the Earth, Mars is made of different layers: a crust, mantle, and a core. Meteorites, like the ones that fell to Earth, are made of the Martian crust, which can tell us a lot about the planet’s composition when the pieces are analyzed. According to a study published this week in Nature Geoscience, there could be at least two distinct reservoirs of ancient water lurking below the Martian surface. Each with its own (different) chemical signature.

This means that Mars probably never had a global ocean of magma beneath its surface like we do on Earth.

For this study, Barnes and her team looked for clues as to the Mars’ water history by analyzing the ratio of two types (isotopes) of hydrogen. They’re not the first to do so, but previous results have been very inconsistent.

Advertisement
-->

To better understand how the planet formed and where its water came from, the researchers examined two different meteorites: a coin-sized sample known as Black Beauty (or NWA 7034), which formed when a huge impact cemented together various pieces of the Martian crust, and Allan Hills 84001 (ALH84001), a sample once thought to contain Martian microbes. The data shows that water comes from two different sources.

A view of the ALH84001, Alan Hills meteorite. Credit: NASA

The team was searching for different isotopes of hydrogen — light hydrogen and heavy hydrogen — which can help trace the origin of water in rocks. (Isotopes are variations of chemical elements, with different numbers of neutrons.)

“Light hydrogen” contains one proton (and no neutrons) in its nucleus, whereas “heavy hydrogen,” also known as deuterium, contains one proton and one neutron in its core. The ratio of these two isotopes act like a fossil record of water, telling a planetary scientist its origin.

Here on Earth, protium (or light hydrogen) is the most abundant isotope. It’s found in the atmosphere, in rocks, and the ocean. On Mars, however, deuterium (heavy hydrogen) is the most abundant in the atmosphere, while Martian rocks contain a range of ratios from Earth-like to Mars-like.

To better understand the vast variation, Barnes and her team decided to focus on samples they knew came from the Martian crust — Black Beauty and Alan Hills. The team found that both samples interacted with water at different point in Mars’ history, but had similar isotope ratios, that was very similar to younger rocks analyzed by the Curiosity rover.

Curiosity drills into the ground to analyze samples. Credit: NASA/JPL-Caltech

This data suggested a surprising result: that the chemical composition of that water hasn’t changed for nearly 4 billion years.

“Martian meteorites basically plot all over the place, and so trying to figure out what these samples are telling us about water in the mantle of Mars has historically been a challenge,” Barnes said.”The fact that our data for the crust was so different prompted us to go back through the scientific literature and scrutinize the data.”

Advertisement
-->

So the team compared their results to previous isotope studies, where the meteorites originated in the Martian mantle. They discovered that the isotope ratios were consistent with two types of volcanic rock, known as shergottite, that’s found in the Martian mantle.

A view of the interior of Earth, Mars, and the Moon. Credit: NASA

This means that the water within the meteorite samples came from two different sources. It also indicates that Mars lacked a global magma ocean, which would have made the mantle more consistent in its composition.

“These two different sources of water in Mars’ interior might be telling us something about the kinds of objects that were available to coalesce into the inner, rocky planets,” Barnes said.

Meaning two distinct planetary precursors with vastly different water contents could have collided, but never thoroughly mixed. And understanding how Mars formed is essential for understanding its past habitability and potential for life.

I write about space, science, and future tech.

Advertisement
Comments

Elon Musk

Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

Published

on

Credit: xAI/X

xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters. 

The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.

xAI’s turbine deal details

News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.

As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X. 

xAI’s ambitions 

Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”

Advertisement
-->

The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website. 

Continue Reading

Elon Musk

Elon Musk’s xAI closes upsized $20B Series E funding round

xAI announced the investment round in a post on its official website. 

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. 

xAI announced the investment round in a post on its official website. 

A $20 billion Series E round

As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others. 

Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.

As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”

Advertisement
-->

xAI’s core mission

Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.

xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5. 

“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote. 

Continue Reading

Investor's Corner

Tesla gets price target bump, citing growing lead in self-driving

Published

on

Credit: Tesla

Tesla (NASDAQ: TSLA) stock received a price target update from Pierre Ferragu of Wall Street firm New Street Research, citing the company’s growing lead in self-driving and autonomy.

On Tuesday, Ferragu bumped his price target from $520 to $600, stating that the consensus from the Consumer Electronics Show in Las Vegas was that Tesla’s lead in autonomy has been sustained, is growing, and sits at a multiple-year lead over its competitors.

CES 2026 validates Tesla’s FSD strategy, but there’s a big lag for rivals: analyst

“The signal from Vegas is loud and clear,” the analyst writes. “The industry isn’t catching up to Tesla; it is actively validating Tesla’s strategy…just with a 12-year lag.”

The note shows that the company’s prowess in vehicle autonomy is being solidified by lagging competitors that claim to have the best method. The only problem is that Tesla’s Vision-based approach, which it adopted back in 2022 with the Model 3 and Model Y initially, has been proven to be more effective than competitors’ approach, which utilizes other technology, such as LiDAR and sensors.

Currently, Tesla shares are sitting at around $433, as the company’s stock price closed at $432.96 on Tuesday afternoon.

Ferragu’s consensus on Tesla shares echoes that of other Wall Street analysts who are bullish on the company’s stock and position within the AI, autonomy, and robotics sector.

Dan Ives of Wedbush wrote in a note in mid-December that he anticipates Tesla having a massive 2026, and could reach a $3 trillion valuation this year, especially with the “AI chapter” taking hold of the narrative at the company.

Ives also said that the big step in the right direction for Tesla will be initiating production of the Cybercab, as well as expanding on the Robotaxi program through the next 12 months:

“…as full-scale volume production begins with the autonomous and robotics roadmap…The company has started to test the all-important Cybercab in Austin over the past few weeks, which is an incremental step towards launching in 2026 with important volume production of Cybercabs starting in April/May, which remains the golden goose in unlocking TSLA’s AI valuation.”

Tesla analyst breaks down delivery report: ‘A step in the right direction’

Tesla has transitioned from an automaker to a full-fledged AI company, and its Robotaxi and Cybercab programs, fueled by the Full Self-Driving suite, are leading the charge moving forward. In 2026, there are major goals the company has outlined. The first is removing Safety Drivers from vehicles in Austin, Texas, one of the areas where it operates a ride-hailing service within the U.S.

Ultimately, Tesla will aim to launch a Level 5 autonomy suite to the public in the coming years.

Continue Reading