Connect with us

News

Meteorites give new insights into Martian water

A view of Mars. Credit: NASA/JPL-Caltech

Published

on

Mars is a dry, desert world devoid of any life (that we know of). But once upon a time, that wasn’t the case. Data collected by the robotic emissaries we’ve sent to explore the planet on our behalf indicate that the red planet was once a lush and wet world.

However, scientists are still trying to piece together Martian history to understand what happened to the planet’s water. While we know much of it was lost when the planet’s atmosphere was stripped away, what we don’t know is where the water originated from. Researchers uncovered a crucial clue in Martian meteorites found here on Earth.

“A lot of people have been trying to figure out Mars’ water history,” Jessica Barnes, an assistant professor of planetary sciences in the University of Arizona Lunar and Planetary Laboratory, said in a statement. “Like, where did water come from? How long was it in the crust (surface) of Mars? Where did Mars’ interior water come from? What can water tell us about how Mars formed and evolved?”

A view of the Northwest Africa 7034 meteorite (aka Black Beauty). Credit: Institute of Meteoritics UNM

Like the Earth, Mars is made of different layers: a crust, mantle, and a core. Meteorites, like the ones that fell to Earth, are made of the Martian crust, which can tell us a lot about the planet’s composition when the pieces are analyzed. According to a study published this week in Nature Geoscience, there could be at least two distinct reservoirs of ancient water lurking below the Martian surface. Each with its own (different) chemical signature.

This means that Mars probably never had a global ocean of magma beneath its surface like we do on Earth.

For this study, Barnes and her team looked for clues as to the Mars’ water history by analyzing the ratio of two types (isotopes) of hydrogen. They’re not the first to do so, but previous results have been very inconsistent.

Advertisement
-->

To better understand how the planet formed and where its water came from, the researchers examined two different meteorites: a coin-sized sample known as Black Beauty (or NWA 7034), which formed when a huge impact cemented together various pieces of the Martian crust, and Allan Hills 84001 (ALH84001), a sample once thought to contain Martian microbes. The data shows that water comes from two different sources.

A view of the ALH84001, Alan Hills meteorite. Credit: NASA

The team was searching for different isotopes of hydrogen — light hydrogen and heavy hydrogen — which can help trace the origin of water in rocks. (Isotopes are variations of chemical elements, with different numbers of neutrons.)

“Light hydrogen” contains one proton (and no neutrons) in its nucleus, whereas “heavy hydrogen,” also known as deuterium, contains one proton and one neutron in its core. The ratio of these two isotopes act like a fossil record of water, telling a planetary scientist its origin.

Here on Earth, protium (or light hydrogen) is the most abundant isotope. It’s found in the atmosphere, in rocks, and the ocean. On Mars, however, deuterium (heavy hydrogen) is the most abundant in the atmosphere, while Martian rocks contain a range of ratios from Earth-like to Mars-like.

To better understand the vast variation, Barnes and her team decided to focus on samples they knew came from the Martian crust — Black Beauty and Alan Hills. The team found that both samples interacted with water at different point in Mars’ history, but had similar isotope ratios, that was very similar to younger rocks analyzed by the Curiosity rover.

Curiosity drills into the ground to analyze samples. Credit: NASA/JPL-Caltech

This data suggested a surprising result: that the chemical composition of that water hasn’t changed for nearly 4 billion years.

“Martian meteorites basically plot all over the place, and so trying to figure out what these samples are telling us about water in the mantle of Mars has historically been a challenge,” Barnes said.”The fact that our data for the crust was so different prompted us to go back through the scientific literature and scrutinize the data.”

Advertisement
-->

So the team compared their results to previous isotope studies, where the meteorites originated in the Martian mantle. They discovered that the isotope ratios were consistent with two types of volcanic rock, known as shergottite, that’s found in the Martian mantle.

A view of the interior of Earth, Mars, and the Moon. Credit: NASA

This means that the water within the meteorite samples came from two different sources. It also indicates that Mars lacked a global magma ocean, which would have made the mantle more consistent in its composition.

“These two different sources of water in Mars’ interior might be telling us something about the kinds of objects that were available to coalesce into the inner, rocky planets,” Barnes said.

Meaning two distinct planetary precursors with vastly different water contents could have collided, but never thoroughly mixed. And understanding how Mars formed is essential for understanding its past habitability and potential for life.

I write about space, science, and future tech.

Advertisement
Comments

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

Advertisement
-->

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

Advertisement
-->

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Advertisement
-->
Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Advertisement
-->

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

Advertisement
-->

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading

Cybertruck

Tesla updates Cybertruck owners about key Powershare feature

Published

on

Credit: Tesla

Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.

Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.

Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.

However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.

Powerwall discharge would be prioritized before tapping into the truck’s larger pack.

Advertisement
-->

However, Tesla is still working on getting the feature out to owners, an email said:

“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026. 

This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”

Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.

Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.

Advertisement
-->

Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:

He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”

Advertisement
-->

It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.

Continue Reading