Connect with us

News

NASA wants SpaceX to dock Dragons at new Russian space station ‘node’

Crew Dragon, meet Prichal. (Mike Hopkins | Anton Shkaplerov)

Published

on

State media agency RIA says that NASA and Roscosmos are negotiating an agreement that would eventually allow SpaceX Dragon spacecraft and other future visiting vehicles to dock to a new Russian ‘node’ module recently installed on the International Space Station (ISS).

Prichal – Russian for “pier” – was successfully launched into orbit on a Soyuz 2.1 rocket on November 24th. A tug derived from the space agency’s uncrewed Progress resupply ship delivered the decade-old module to the ISS two days later, culminating in a successful docking on November 26th. Weighing almost four tons (3890kg/8600lb), Prichal is a 3.3m (~11ft) wide spherical pressure vessel whose sole purpose is to receive visiting cargo and crew vehicles and (in theory) enable further expansion of the space station’s Russian segment.

It remains to be seen if Roscosmos will be able to complete and launch any of several new planned space station modules in time for doing so to still make sense. Aside from a significant amount of uncertainty as to whether Russia will actually continue to support its ISS segment beyond 2030, Roscosmos has had a nightmarish time preparing the last two “new” segments – Prichal and Nauka. Nauka, a habitation and laboratory module, was originally planned to launch in 2007. Only fourteen years later – in July 2021 – did Roscosmos finally manage to finish and launch the module, which then proceeded to perform a long, uncommanded thruster firing that could have easily damaged or destroyed the entire station on the same day it arrived.

Meanwhile, work on Prichal began in 2007 and the module was initially expected to launch in 2013. Concerted development began in 2010 and construction was completed by 2014. Planned to be an extension of Nauka, Prichal was subsequently forced to spend almost seven years in storage before it was finally brought out of the closet and launched in November 2021.

Now, while odds are firmly against Prichal ever supporting another Russian ISS module, the ‘node’ still has plenty of potential operating solely as a docking hub or (per its namesake) a pier. Outfitted with six docking ports, one of which now connects it to Nauka and the rest of the ISS, the other five ports are effectively free to be used by any arriving Russian spacecraft – including Progress cargo ships, Soyuz crew vehicles, and next-generation Orel (Eagle) spacecraft. However, according to Roscosmos and state media outlet RIA, SpaceX’s Crew and Cargo Dragons and other US spacecraft set to use the western International Docking Adapter (IDA) standard could be added to the list of possible tenants.

Advertisement
-->

To allow a spacecraft fitted with IDA to dock to one of Prichal’s four radial “ASP-GB” ports, some kind of adapter would first need to be designed, constructed, launched, and installed. The specifics of that work are likely what’s being “negotiated” – namely how Roscosmos will be compensated for building its portion of that hypothetical adapter. NASA would likely procure and provide a new IDA port, while Russia would build the ASP-GB connection. As is common for the ISS program, compensation would likely come in the form of services rendered rather than a direct payment, with NASA perhaps launching an extra Russian cosmonaut or providing a larger portion of supplies for a set period.

Some US spacecraft (including Cygnus, Dreamchaser, and SpaceX’s old Dragon) use a common berthing mechanism to mate with the ISS. (NASA)
SpaceX’s new Crew Dragon and Cargo Dragon 2 spacecraft use a different IDA docking adapter and dock autonomously, whereas CBM spacecraft are ‘grappled’ by the station’s robotic Canadarm2 arm. Boeing’s Starliner will also use IDA, as will any other future US crewed spacecraft. (NASA/ESA)

If realized, the addition of a third IDA port at the International Space Station would make life significantly easier for NASA. Even now, with just two spacecraft (Crew and Cargo Dragon) to worry about, NASA is forced to very carefully schedule arrivals and departures and has already had to have SpaceX perform multiple Crew Dragon port relocation maneuvers to prepare for the arrival of other Dragons. In the near future, Boeing’s Starliner spacecraft and semi-annual private Crew Dragon missions to the ISS will also enter the fray, making the scheduling and sequencing of spacecraft arrivals and departures even more challenging.

The US ISS segment really only has two ports still available for conversion to the IDA standard and both are needed to ensure safe, redundant cargo deliveries from uncrewed Cygnus and (as early as next year) Dreamchaser spacecraft throughout the 2020s. Ultimately, that means that an agreement to place a third IDA on the Russian segment is the only clear way NASA can give itself breathing room for the next decade of IDA spacecraft operations.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films

A Starship that launches from the Florida site could touch down on the same site years later.

Published

on

Credit: SpaceX/X

The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.

According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies. 

Booster in Minutes, Ship in (possibly) years

The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.

“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.

This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.

Advertisement
-->

Noise and emissions flagged but deemed manageable

While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.

Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.

SpaceX Starship Environmental Impact Statement by Simon Alvarez

Continue Reading

News

Tesla Full Self-Driving (FSD) testing gains major ground in Spain

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Spain’s ES-AV framework

Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.

“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote. 

The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Advertisement
-->
Credit: DGT

Tesla FSD tests

As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.

The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed. 

Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.

Continue Reading

News

Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.

Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.

FSD V14.2.1 first impressions

Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”

Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.

Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall. 

Advertisement
-->

Sign recognition and freeway prowess

Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.

FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.

FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”

Continue Reading