Connect with us

News

NASA wants SpaceX to dock Dragons at new Russian space station ‘node’

Crew Dragon, meet Prichal. (Mike Hopkins | Anton Shkaplerov)

Published

on

State media agency RIA says that NASA and Roscosmos are negotiating an agreement that would eventually allow SpaceX Dragon spacecraft and other future visiting vehicles to dock to a new Russian ‘node’ module recently installed on the International Space Station (ISS).

Prichal – Russian for “pier” – was successfully launched into orbit on a Soyuz 2.1 rocket on November 24th. A tug derived from the space agency’s uncrewed Progress resupply ship delivered the decade-old module to the ISS two days later, culminating in a successful docking on November 26th. Weighing almost four tons (3890kg/8600lb), Prichal is a 3.3m (~11ft) wide spherical pressure vessel whose sole purpose is to receive visiting cargo and crew vehicles and (in theory) enable further expansion of the space station’s Russian segment.

It remains to be seen if Roscosmos will be able to complete and launch any of several new planned space station modules in time for doing so to still make sense. Aside from a significant amount of uncertainty as to whether Russia will actually continue to support its ISS segment beyond 2030, Roscosmos has had a nightmarish time preparing the last two “new” segments – Prichal and Nauka. Nauka, a habitation and laboratory module, was originally planned to launch in 2007. Only fourteen years later – in July 2021 – did Roscosmos finally manage to finish and launch the module, which then proceeded to perform a long, uncommanded thruster firing that could have easily damaged or destroyed the entire station on the same day it arrived.

Meanwhile, work on Prichal began in 2007 and the module was initially expected to launch in 2013. Concerted development began in 2010 and construction was completed by 2014. Planned to be an extension of Nauka, Prichal was subsequently forced to spend almost seven years in storage before it was finally brought out of the closet and launched in November 2021.

Now, while odds are firmly against Prichal ever supporting another Russian ISS module, the ‘node’ still has plenty of potential operating solely as a docking hub or (per its namesake) a pier. Outfitted with six docking ports, one of which now connects it to Nauka and the rest of the ISS, the other five ports are effectively free to be used by any arriving Russian spacecraft – including Progress cargo ships, Soyuz crew vehicles, and next-generation Orel (Eagle) spacecraft. However, according to Roscosmos and state media outlet RIA, SpaceX’s Crew and Cargo Dragons and other US spacecraft set to use the western International Docking Adapter (IDA) standard could be added to the list of possible tenants.

Advertisement

To allow a spacecraft fitted with IDA to dock to one of Prichal’s four radial “ASP-GB” ports, some kind of adapter would first need to be designed, constructed, launched, and installed. The specifics of that work are likely what’s being “negotiated” – namely how Roscosmos will be compensated for building its portion of that hypothetical adapter. NASA would likely procure and provide a new IDA port, while Russia would build the ASP-GB connection. As is common for the ISS program, compensation would likely come in the form of services rendered rather than a direct payment, with NASA perhaps launching an extra Russian cosmonaut or providing a larger portion of supplies for a set period.

Some US spacecraft (including Cygnus, Dreamchaser, and SpaceX’s old Dragon) use a common berthing mechanism to mate with the ISS. (NASA)
SpaceX’s new Crew Dragon and Cargo Dragon 2 spacecraft use a different IDA docking adapter and dock autonomously, whereas CBM spacecraft are ‘grappled’ by the station’s robotic Canadarm2 arm. Boeing’s Starliner will also use IDA, as will any other future US crewed spacecraft. (NASA/ESA)

If realized, the addition of a third IDA port at the International Space Station would make life significantly easier for NASA. Even now, with just two spacecraft (Crew and Cargo Dragon) to worry about, NASA is forced to very carefully schedule arrivals and departures and has already had to have SpaceX perform multiple Crew Dragon port relocation maneuvers to prepare for the arrival of other Dragons. In the near future, Boeing’s Starliner spacecraft and semi-annual private Crew Dragon missions to the ISS will also enter the fray, making the scheduling and sequencing of spacecraft arrivals and departures even more challenging.

The US ISS segment really only has two ports still available for conversion to the IDA standard and both are needed to ensure safe, redundant cargo deliveries from uncrewed Cygnus and (as early as next year) Dreamchaser spacecraft throughout the 2020s. Ultimately, that means that an agreement to place a third IDA on the Russian segment is the only clear way NASA can give itself breathing room for the next decade of IDA spacecraft operations.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla ‘Mad Max’ gets its first bit of regulatory attention

Published

on

Credit: Teslarati

Tesla “Mad Max” mode has gotten its first bit of regulatory attention, as the National Highway Traffic Safety Administration (NHTSA) has asked for additional information on the Speed Profile.

A few weeks ago, Tesla officially launched a new Speed Profile for Full Self-Driving (Supervised) known as “Mad Max,” which overtook the “Hurry” mode for the fastest setting FSD offers.

Tesla launches ‘Mad Max’ Full Self-Driving Speed Profile, its fastest yet

It launched with Full Self-Driving v14.1.2, and it was no secret that the company was looking for a new mode that would cater to more aggressive driving styles.

The release notes showed the description of the Speed Profile as:

“Introduced new speed profile MAD MAX, which comes with higher speeds and more frequent lane changes than Hurry.”

It certainly lived up to its description. In our testing, it was aggressive, fast, and drove similarly to some of the more challenging traffic patterns I’ve come across.

In normal highway driving, it was one of the quicker cars on the road, while other applications saw it be a suitable version for navigating things like rush-hour traffic.

Here’s what my experience with it was:

While Tesla owners have certainly enjoyed the feature and the behaviors of Mad Max, the NHTSA said it is in contact with Tesla about it, looking to gather additional information. Additionally, it said:

“The human behind the wheel is fully responsible for driving the vehicle and complying with all traffic safety laws.”

The important thing to note with Mad Max mode, along with the other Speed Profiles, is that the driver can choose whichever one they’d like, and they all cater to different driving styles.

While Mad Max is more aggressive, modes like “Sloth” and “Standard” are significantly more conservative and can be more suitable for those who are not comfortable with the faster, more spirited versions.

Continue Reading

News

Tesla shares AI5 chip’s ambitious production roadmap details

Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design.”

Published

on

Tesla-Chips-HW3-2
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla CEO Elon Musk has revealed new details about the company’s next-generation AI5 chip, describing it as “an amazing design” that could outperform its predecessor by a notable margin. Speaking during Tesla’s Q3 2025 earnings call, Musk outlined how the chip will be manufactured in partnership with both Samsung and TSMC, with production based entirely in the United States.

What makes AI5 special

According to Musk, the AI5 represents a complete evolution of Tesla’s in-house AI hardware, building on lessons learned from the AI4 system currently used in its vehicles and data centers. “By some metrics, the AI5 chip will be 40x better than the AI4 chip, not 40%, 40x,” Musk said during the Q3 2025 earnings call. He credited Tesla’s unique vertical integration for the breakthrough, noting that the company designs both the software and hardware stack for its self-driving systems.

To streamline the new chip, Tesla eliminated several traditional components, including the legacy GPU and image signal processor, since the AI5 architecture already incorporates those capabilities. Musk explained that these deletions allow the chip to fit within a half-reticle design, improving efficiency and power management. 

“This is a beautiful chip,” Musk said. “I’ve poured so much life energy into this chip personally, and I’m confident this is going to be a winner.”

Tesla’s dual manufacturing strategy for AI5

Musk confirmed that both Samsung’s Texas facility and TSMC’s Arizona plant will fabricate AI5 chips, with each partner contributing to early production. “It makes sense to have both Samsung and TSMC focus on AI5,” the CEO said, adding that while Samsung has slightly more advanced equipment, both fabs will support Tesla’s U.S.-based production goals.

Advertisement

Tesla’s explicit objective, according to Musk, is to create an oversupply of AI5 chips. The surplus units could be used in Tesla’s vehicles, humanoid robots, or data centers, which already use a mix of AI4 and NVIDIA hardware for training. “We’re not about to replace NVIDIA,” Musk clarified. “But if we have too many AI5 chips, we can always put them in the data center.”

Musk emphasized that Tesla’s focus on designing for a single customer gives it a massive advantage in simplicity and optimization. “NVIDIA… (has to) satisfy a large range of requirements from many customers. Tesla only has to satisfy one customer, Tesla,” he said. This, Musk stressed, allows Tesla to delete unnecessary complexity and deliver what could be the best performance per watt and per dollar in the industry once AI5 production scales.

Continue Reading

Energy

Tesla VP hints at Solar Roof comeback with Giga New York push

The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.

Published

on

tesla-solar-roof-500k
Image Credit: Tesla/Twitter

Tesla’s long-awaited and way underrated Solar Roof may finally be getting its moment. During the company’s Q3 2025 earnings call, Vice President of Energy Engineering Michael Snyder revealed that production of a new residential solar panel has started at Tesla’s Buffalo, New York facility, with shipments to customers beginning in the first quarter of 2026. 

The comments hint at possible renewed life for the Solar Roof program, which has seen years of slow growth since its 2016 unveiling.

Tesla Energy’s strong demand

Responding to an investor question about Tesla’s energy backlog, Snyder said demand for Megapack and Powerwall continues to be “really strong” into next year. He also noted positive customer feedback for the company’s new Megablock product, which is expected to start shipping from Houston in 2026.

“We’re seeing remarkable growth in the demand for AI and data center applications as hyperscalers and utilities have seen the versatility of the Megapack product. It increases reliability and relieves grid constraints,” he said.

Snyder also highlighted a “surge in residential solar demand in the US,” attributing the spike to recent policy changes that incentivize home installations. Tesla expects this trend to continue into 2026, helped by the rollout of a new solar lease product that makes adoption more affordable for homeowners.

Advertisement

Possible Solar Roof revival?

Perhaps the most intriguing part of Snyder’s remarks, however, was Tesla’s move to begin production of its “residential solar panel” in Buffalo, New York. He described the new panels as having “industry-leading aesthetics” and shape performance, language Tesla has used to market its Solar Roof tiles in the past.

“We also began production of our Tesla residential solar panel in our Buffalo factory, and we will be shipping that to customers starting Q1. The panel has industry-leading aesthetics and shape performance and demonstrates our continued commitment to US manufacturing,” Snyder said during the Q3 2025 earnings call.

Snyder did not explicitly name the product, though his reference to aesthetics has fueled speculation that Tesla may finally be preparing a large-scale and serious rollout of its Solar Roof line.

Originally unveiled in 2016, the Solar Roof was intended to transform rooftops into clean energy generators without compromising on design. However, despite early enthusiasm, production and installation volumes have remained limited for years. In 2023, a report from Wood Mackenzie claimed that there were only 3,000 operational Solar Roof installations across the United States at the time, far below forecasts. In response, the official Tesla Energy account on X stated that the report was “incorrect by a large margin.”

Advertisement
Continue Reading

Trending