News
Relativity Space’s first 3D-printed rocket arrives at launch pad
Relativity Space has shipped both stages of its first 3D-printed Terran-1 rocket to a launch pad it recently finished constructing at Florida’s Cape Canaveral Space Force Station (CCSFS), leaving the startup just a few steps away from its first orbital launch attempt.
As Relativity CEO Tim Ellis himself noted, the company is about two years behind its initial goal of a 2020 launch debut, but it’s far from alone in that regard. Virtually all of its most direct competitors are in similar boats. Out of sheer coincidence, startups ABL Space and Firefly Space are working towards orbital launch attempts of their similarly sized RS1 and Alpha rockets – ABL for the first time and Firefly for the second time – as early as summer 2022. Now, so is Relativity.
Almost simultaneously, all three companies have announced that both stages of their Terran-1, RS1, and Alpha rockets have arrived at their respective launch sites in Florida, Alaska, and California. Firefly, who has already successfully static fired Alpha’s first and second stages, is undoubtedly in the lead, but ABL Space and Relativity are neck and neck for second.
Both of the latter startups have successfully qualified the smaller, less powerful upper stages of their RS1 and Terran-1 rockets. Both intend to conduct final booster qualification testing – including the first all-engine, full-power static fires – at their launch sites. ABL has a bit of a leg up over Relativity, as it delivered its RS1 booster to its Kodiak, Alaska launch pad months ago. Still, Relativity appears to be on a roll and delivered both stages of its unique 3D-printed Terran-1 rocket to its Cape Canaveral launch site just a few weeks apart in May and June 2022. ABL Space also suffered a major failure during its first attempted upper stage qualification, though the company rapidly recovered. At least publicly, Relativity has experienced no major stage failures while developing Terran-1.



Alpha, RS1, and Terran-1 are all designed to launch roughly 1.2-1.35 tons (2600-3000 lb) to low Earth orbit. All three are roughly the same size and designed to be expended after every launch. Terran-1 and RS1 are designed to launch up to 1.25 and 1.35 tons for $12 million, while Alpha is a bit more expensive at $15 million for 1.17 tons. RS1 is a largely traditional welded-aluminum rocket not unlike SpaceX’s Falcon 1, but with nine smaller booster engines instead of Falcon 1’s one. Alpha is almost entirely built out of carbon fiber composites and is powered by four slightly larger main engines.
Terran-1 has nine 3D-printed booster engines and is also made mostly of aluminum. However, Relativity’s claim to fame is 3D printing, and it says that even its very first Terran-1 rocket is 85% 3D-printed by mass and is the largest single 3D-printed object ever built. Terran-1 reportedly weighs around 9.3 tons (20,500 lb) empty.
If Terran-1’s booster qualification testing goes as smoothly as it did for the rocket’s upper stage, Relativity could be ready for its first orbital launch attempt as early as summer (Q3) 2022, just in time to join Firefly (July) and ABL (August). Relativity Space’s ultimate goal? 3D-print similar rockets on Mars.
Elon Musk
Elon Musk’s xAI bets $20B on Mississippi with 2GW AI data center project
The project is expected to create hundreds of permanent jobs, dramatically expand xAI’s computing capacity, and further cement the Mid-South as a growing hub for AI infrastructure.
Elon Musk’s xAI plans to pour more than $20 billion into a massive new data center campus in Southaven, Mississippi, marking the largest single economic development project in the state’s history.
The project is expected to create hundreds of permanent jobs, dramatically expand xAI’s computing capacity, and further cement the Mid-South as a growing hub for AI infrastructure.
xAI goes MACROHARDRR in Mississippi
xAI has acquired and is retrofitting an existing facility in Southaven to serve as a new data center, which will be known as “MACROHARDRR.” The site sits near a recently acquired power plant and close to one of xAI’s existing data centers in Tennessee, creating a regional cluster designed to support large-scale AI training and inference.
Once completed, the Southaven facility is expected to push the company’s total computing capacity to nearly 2 GW, placing it among the most powerful AI compute installations globally. The data center is scheduled to begin operations in February 2026.
Gov. Tate Reeves shared his optimism about the project in a press release. “This record-shattering $20 billion investment is an amazing start to what is sure to be another incredible year for economic development in Mississippi. Today, Elon Musk is bringing xAI to DeSoto County, a project that will transform the region and bring amazing opportunities to its residents for generations. This is the largest economic development project in Mississippi’s history,” he said.
xAI’s broader AI ambitions
To secure the investment, the Mississippi Development Authority approved xAI for its Data Center Incentive program, which provides sales and use tax exemptions on eligible computing hardware and software. The City of Southaven and DeSoto County are also supporting the project through fee-in-lieu agreements aimed at accelerating development timelines and reducing upfront costs.
Founded in 2023 by Elon Musk, xAI develops advanced artificial intelligence systems focused on large-scale reasoning and generative applications. Its flagship product, Grok, is integrated with the social media platform X, alongside a growing suite of APIs for image generation, voice, and autonomous agents, including offerings tailored for government use.
Elon Musk highlighted xAi’s growth and momentum in a comment about the matter. “xAI is scaling at an immeasurable pace — we are building our third massive data center in the greater Memphis area. MACROHARDRR pushes our Colossus training compute to ~2GW – by far the most powerful AI system on Earth. This is insane execution speed by xAI and the state of Mississippi. We are grateful to Governor Reeves for his support of building xAI at warp speed,” Musk said.
Elon Musk
Tesla AI Head says future FSD feature has already partially shipped
Tesla’s Head of AI, Ashok Elluswamy, says that something that was expected with version 14.3 of the company’s Full Self-Driving platform has already partially shipped with the current build of version 14.2.
Tesla and CEO Elon Musk have teased on several occasions that reasoning will be a big piece of future Full Self-Driving builds, helping bring forth the “sentient” narrative that the company has pushed for these more advanced FSD versions.
Back in October on the Q3 Earnings Call, Musk said:
“With reasoning, it’s literally going to think about which parking spot to pick. It’ll drop you off at the entrance of the store, then go find a parking spot. It’s going to spot empty spots much better than a human. It’s going to use reasoning to solve things.”
Musk said in the same month:
“By v14.3, your car will feel like it is sentient.”
Amazingly, Tesla Full Self-Driving v14.2.2.2, which is the most recent iteration released, is very close to this sentient feeling. However, there are more things that need to be improved, and logic appears to be in the future plans to help with decision-making in general, alongside other refinements and features.
On Thursday evening, Elluswamy revealed that some of the reasoning features have already been rolled out, confirming that it has been added to navigation route changes during construction, as well as with parking options.
He added that “more and more reasoning will ship in Q1.”
🚨 Tesla’s Ashok Elluswamy reveals Nav decisions when encountering construction and parking options contain “some elements of reasoning”
More uses of reasoning will be shipped later this quarter, a big tidbit of info as we wait v14.3 https://t.co/jty8llgsKM
— TESLARATI (@Teslarati) January 9, 2026
Interestingly, parking improvements were hinted at being added in the initial rollout of v14.2 several months ago. These had not rolled out to vehicles quite yet, as they were listed under the future improvements portion of the release notes, but it appears things have already started to make their way to cars in a limited fashion.
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
As reasoning is more involved in more of the Full Self-Driving suite, it is likely we will see cars make better decisions in terms of routing and navigation, which is a big complaint of many owners (including me).
Additionally, the operation as a whole should be smoother and more comfortable to owners, which is hard to believe considering how good it is already. Nevertheless, there are absolutely improvements that need to be made before Tesla can introduce completely unsupervised FSD.
Elon Musk
Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD).
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
10 billion miles of training data
Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly.
“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote.
Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles.
FSD’s total training miles
As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program.
The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”