News
Rocket Lab, Virgin Orbit lead a new class of small rockets with big ambitions for 2021
SpaceX’s reign as the only privately funded American spaceflight company to reach and successfully deploy small satellite payloads into orbit ended on January 21, 2018, when Rocket Lab’s Electron rocket delivered three customer CubeSats to orbit for the first time.
SpaceX and Rocket Lab have since been the only private American companies to offer dedicated and rideshare delivery of small satellites to orbit. That is until Virgin Orbit joined the competition with the success of its Launch Demo 2 mission earlier this week.
Airdropping rockets
On Sunday, January 17, Virgin Orbit – one of two spaceflight companies backed by billionaire Richard Branson – joined SpaceX and Rocket Lab as the next private American rocket launcher sending small satellites to space. Virgin Orbit delivers its payload slightly differently than SpaceX and Rocket Lab. Virgin Orbit can uniquely offer its customers the flexibility of launch site because its liquid-fueled rocket is dropped mid-air from under the wing of a massive Boeing 747 before propelling itself to space.
In the Spring of 2020 Virgin Orbit conducted its first Launch Demo mission off of the coast of southern California. Prior to the rocket’s first stage ignition, the company achieved the majority of its intended test flight targets. Just after LauncherOne’s first stage ignition the rocket prematurely shut down resulting in the complete loss of the rocket and its payload as it fell to the ocean.

After months of investigation, Virgin Orbit attributed the prematurely terminated flight to a component failure that led to a breach of a high-pressure line starving the engine of Liquid Oxygen resulting in the immediate loss of propulsion. The issue was remedied quickly and Virgin Orbit aimed to fly and launch again in December 2020 for its Launch Demo 2 mission attempting to successfully achieve orbit by the close of the year. In mid-December, the launch date of Launch Demo 2 was postponed until January 2021 due to impacts to operation and scheduling caused by the Covid-19 pandemic.
Virgin Orbit’s 747, Cosmic Girl, piloted by Kelly Latimer took to the skies on Sunday, January 17 with a fully fueled LauncherOne rocket loaded with a payload of nine CubeSat missions made up of ten spacecraft for NASA’s Educational Launch of NanoSatellites (ELaNa XX) series contracted under NASA’s Venture Class Launch Services program.

The Launch Demo 2 mission went off without a hitch. Just as with the first Launch Demo, all pre-launch activities proceeded nominally with Cosmic Girl reaching an altitude of 30,000 feet prior to the release of LauncherOne over the Pacific Ocean. Once released into free flight, the rocket’s first stage engine ignited and carried it through the atmosphere until separation and second stage engine ignition beyond the Kármán line – the recognized point at which “space” is defined beyond Earth’s atmosphere. Eventually, all nine payloads were successfully deployed into orbit completing the first-ever successful mission of an orbital class, liquid-fueled, air-launched rocket to reach space.
Another One Leaves The Crust
SpaceX has set the pace for space in 2021 successfully achieving two orbital-class launches within the first twenty days of the year with a third mission scheduled to depart Launch Complex 40 at Cape Canaveral Space Force Base in Florida on Friday, January 22. Likewise, Rocket Lab looks to aggressively exceed its previous launch record of seven missions in one calendar year. The only way to demolish a previous record is to launch frequently from multiple spaceports. SpaceX currently has three active launchpads, two in Florida and one in California. Within 2021, Rocket Lab will also have three operational launchpads, two in New Zealand and one in Virginia.
On Wednesday, January 20, 2021 – its third anniversary of first making it to orbit – Rocket Lab successfully launched its first Electron mission of 2021 nicknamed “Another One Leaves The Crust.” After standing down from a previous launch attempt on January 16 due to an erroneous sensor, the eighteenth overall mission of the Electron rocket successfully launched and deployed a single communications microsatellite for the European space technology company, OHB Group. The mission took place from Launch Complex 1 in Mahia, New Zealand at 07:26 UTC. This mission brings the total satellites deployed by Rocket Lab to 97.
In a statement provided by Rocket Lab, founder and CEO, Peter Beck, states that “We’re proud to be delivering a speedy and streamlined path to orbit for OHB Group on this mission, with launch taking place within six months of contract signing. By flying as a dedicated mission on Electron, OHB and their mission partners have control over launch timing, orbit, integration schedule, and other mission parameters.”
2021 – The year of the small satellite launcher
Expect SpaceX, Rocket Lab, and Virgin Orbit to be joined by other small launchers looking to break into the market sooner rather than later. Another NASA Venture Class Launch Services provider, Astra – a California-based small satellite launcher that launches from Kodiak, Alaska – narrowly missed beating out Virgin Orbit for the third-place slot in the competition to deliver small satellites to orbit.
On December 15, 2020, Astra launched its small orbital-class vehicle, Rocket 3.2, for the second time from Pacific Spaceport Complex on Kodiak Island, Alaska. The vehicle soared past the Kármán line with the upper stage reaching its targeted altitude of 380 kilometers at 7.2 km/sec but falling just shy of achieving orbital velocity at 7.68 km/sec.
Astra is not the only small private spaceflight company looking to join the ranks of SpaceX, Rocket Lab, and now Virgin Orbit. Texas-based Firefly Aerospace is also expected to join the elite group of privately funded spacefaring companies this year.
In October 2020, Firefly successfully completed acceptance testing of the first stage of its small class Alpha rocket. The stage completed a 35-second static fire demonstrating a full range of thrust vector control maneuvers. The first stage of the Alpha rocket has since been shipped to Firefly’s launch complex at Space Launch Complex 2 West (SLC-2W) at Vandenberg Air Force Base in California. In Novemeber 2020 Firelfy began the integration process of the payloads for the maiden Alpha launch.
In December 2020, Astra and Firefly were awarded Venture Class Launch Services Demonstration 2 firm fixed-priced contracts by NASA’s Launch Services Program along with a third small class launcher, California based Relativity Space. Astra received $3.9 million in funding while Firefly was awarded $9.8 million and Relativity received $3 million to place CubeSats in Low Earth Orbit.
SmallSats and CubeSats are quickly becoming the preferred method of operating in orbit because it is technology and opportunity that is attainable for many smaller companies and other parties interested in reaching space such as universities. As SmallSats continue to rise in popularity so too will the demand to launch them. 2021 is already shaping up to become the year that produces the highest amount of private commercialized spaceflight, ever.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.
News
Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.
A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity.
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.
Samsung’s 5G modem
As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.
Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.
The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.
Deepening Tesla–Samsung ties
The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.
Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.
Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.
Elon Musk
Tesla Full Self-Driving pricing strategy eliminates one recurring complaint
Tesla’s new Full Self-Driving pricing strategy will eliminate one recurring complaint that many owners have had in the past: FSD transfers.
In the past, if a Tesla owner purchased the Full Self-Driving suite outright, the company did not allow them to transfer the purchase to a new vehicle, essentially requiring them to buy it all over again, which could obviously get pretty pricey.
This was until Q3 2023, when Tesla allowed a one-time amnesty to transfer Full Self-Driving to a new vehicle, and then again last year.
Tesla is now allowing it to happen again ahead of the February 14th deadline.
The program has given people the opportunity to upgrade to new vehicles with newer Hardware and AI versions, especially those with Hardware 3 who wish to transfer to AI4, without feeling the drastic cost impact of having to buy the $8,000 suite outright on several occasions.
Now, that issue will never be presented again.
Last night, Tesla CEO Elon Musk announced on X that the Full Self-Driving suite would only be available in a subscription platform, which is the other purchase option it currently offers for FSD use, priced at just $99 per month.
Tesla is shifting FSD to a subscription-only model, confirms Elon Musk
Having it available in a subscription-only platform boasts several advantages, including the potential for a tiered system that would potentially offer less expensive options, a pay-per-mile platform, and even coupling the program with other benefits, like Supercharging and vehicle protection programs.
While none of that is confirmed and is purely speculative, the one thing that does appear to be a major advantage is that this will completely eliminate any questions about transferring the Full Self-Driving suite to a new vehicle. This has been a particular point of contention for owners, and it is now completely eliminated, as everyone, apart from those who have purchased the suite on their current vehicle.
Now, everyone will pay month-to-month, and it could make things much easier for those who want to try the suite, justifying it from a financial perspective.
The important thing to note is that Tesla would benefit from a higher take rate, as more drivers using it would result in more data, which would help the company reach its recently-revealed 10 billion-mile threshold to reach an Unsupervised level. It does not cost Tesla anything to run FSD, only to develop it. If it could slice the price significantly, more people would buy it, and more data would be made available.