Connect with us

News

SpaceX nails 50th rocket booster landing ahead of Crew Dragon takeover

SpaceX has completed its 50th successful Falcon booster landing, marking an eventful end to a decade of Cargo Dragon 1 launches. (SpaceX)

Published

on

On its fifth launch of 2020, SpaceX has nailed its 50th Falcon rocket booster landing and sent Cargo Dragon (Dragon 1) en route to the International Space Station (ISS) on its final mission, paving the way for Crew Dragon’s imminent takeover.

At 11:50 pm EST (4:50 UTC), a flight-proven Falcon 9 booster and twice-flown Cargo Dragon spacecraft lifted off from SpaceX’s LC-40 Cape Canaveral Air Force Station (CCAFS) launch pad, sending the Dragon 1 spacecraft on its third and final orbital launch. Things went as planned and the booster nailed its second landing, coming to a rest at Landing Zone-1 (LZ-1), while Falcon 9’s second stage successfully placed Dragon in orbit and deployed the vehicle. Now safely in orbit with both solar arrays deployed, Cargo Dragon will use built-in maneuvering thrusters to tweak its orbit, ultimately rendezvousing with space station no earlier than the morning (EDT) of March 9th.

Hopefully wrapping up a decade of success, the CRS-20 mission will be SpaceX’s last under NASA’s Commercial Resupply Services (CRS) Phase 1 contract, marking Cargo Dragon’s 20th successful space station rendezvous and 19th operational resupply mission. Over those 19 CRS missions, SpaceX – once CRS-20 has safely berthed – will have delivered nearly 45 metric tons (100,000 lb) of cargo to the space station and returned another 31 metric tons (>70,000 lb) to Earth, remaining the only operational spacecraft capable of doing so. While Dragon 1 will cease operations after capsule C112’s planned reentry and splashdown sometime next month, the vast wealth of expertise SpaceX has derived has already been funneled directly into Crew Dragon (Dragon 2), its successor.

As Falcon 9 often does, the rocket’s booster and upper stage engine plumes interacted to produce a spectacular light show, often compared to an artificial nebula. (SpaceX)

Carrying about 2050 kg (4500 lb) of cargo, Cargo Dragon capsule C112 and its expendable trunk section will spend about a month in orbit after berthing with the space station this Monday. The mission may be the last time in history a SpaceX spacecraft berths with the International Space Station, a process that the Dragon 2 spacecraft will soon replace outright once it takes over. Instead of berthing, which refers to the process of astronauts manually ‘grappling’ a visiting vehicle with the space station’s massive robotic arm, SpaceX’s next-generation spacecraft relies on docking, meaning that it does all the work itself.

Docking is thus somewhat riskier and more technically challenging, but it also requires far less input from the station’s crew and can be done almost entirely autonomously, further simplifying the rendezvous process. Once it gets to that point, SpaceX’s massive Starship spacecraft will likely rely on the same docking technology if or when it comes time for it to mate with the ISS – the vehicle is simply too big for anything else.

An overview of the expected modifications needed to turn a Crew Dragon into a Cargo Dragon 2. (NASA OIG)
SpaceX’s Crew Dragon flawlessly performed the company’s for autonomous space station docking back in March 2019. (SpaceX)

A slightly tweaked version of Crew Dragon, SpaceX’s future Cargo Dragon 2 spacecraft will replace its human passengers with the same supplies Cargo Dragon currently ferries to and from the ISS. According to Vice President of Build and Build Reliability Hans Koenigsmann, SpaceX has already begun building its first Cargo Dragon 2 spacecraft back at its Hawthorne, California headquarters. That vehicle’s launch debut is scheduled no earlier than (NET) “fall” 2020 and will support CRS-21, SpaceX’s first NASA resupply mission under its CRS Phase 2 contract.

Cargo Dragon 2’s “launch debut” should thankfully be quite the non-event. Crew Dragon – nearly identical – will have hopefully flown at least two (and perhaps three) orbital missions to the space station by then, dramatically reducing risk. The spacecraft will also use Falcon 9, currently classed as one of the world’s most reliable launch vehicles. CRS-20 marked the rocket’s 54th consecutively successful launch, as well as SpaceX’s 50th successful booster landing since December 2015.

Advertisement
B1059 touched down for the first time on December 5th, 2019, coming to a rest on drone ship Of Course I Still Love You (OCISLY). 91 days later, B1059 completed its second launch and landing (CRS-20). (SpaceX)

For now, though, Cargo Dragon C112 still needs to make its way uphill to rendezvous with the ISS for the final time. Stay tuned for updates on the spacecraft’s last orbital mission.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla says texting and driving capability is coming ‘in a month or two’

“In the next month or two, we’re going to look at the safety statistics, but we’re going to allow you to text and drive, essentially.”

Published

on

Credit: Tesla

Tesla CEO Elon Musk said that within the next month or two, the company will be able to open the ability for people to text and drive because its Full Self-Driving suite will be robust enough to allow drivers to take their attention away from the road.

In its current state, Tesla Full Self-Driving is a supervised driver assistance suite that requires the vehicle operator to maintain control of the vehicle and pay attention to the road surroundings.

However, the company has been aiming to release a fully autonomous version of the Full Self-Driving suite for years, teasing its future potential and aiming to release a Level 5 suite as soon as possible.

CEO Elon Musk believes the company is on the cusp of something drastic, according to what he said at yesterday’s Annual Shareholder Meeting.

One thing Musk hinted at was that the company should be able to allow those sitting in the driver’s seat of their cars to text and drive “in the next month or two,” as long as the statistics look good.

He said:

“In the next month or two, we’re going to look at the safety statistics, but we’re going to allow you to text and drive, essentially.”

The company recently transitioned to its v14 Full Self-Driving suite, which is its most robust to date, and recently expanded to Cybertruck, completing its rollout across the vehicle lineup.

Currently, Tesla is running v14.1.5, and when major improvements are made, that second number will increase, meaning v14.2 will be the next substantial improvement.

Musk said that v14.3 will be when you can “pretty much fall asleep and wake up at your destination.”

We’ve heard a considerable amount of similar statements in the past, and Tesla owners have been conditioned to take some of these timeframes with autonomous driving with a grain of salt.

However, with the upgrades in FSD over the past few months, especially with the rollout of Robotaxi in Austin, which does not utilize anyone in the driver’s seat for local roads, it does not seem as if autonomy is that far off for Tesla.

Continue Reading

News

Tesla Semi undergoes major redesign as dedicated factory preps for deliveries

The Semi has been one of the most anticipated products in the Tesla lineup due to the disruption it could cause in the trucking industry.

Published

on

Tesla put its all-electric Semi truck through quite a major redesign as its dedicated factory for the vehicle is preparing for initial deliveries to the public starting next year.

The Semi has been one of the most anticipated products in the Tesla lineup due to the disruption it could cause in the trucking industry.

It has already been in numerous pilot programs for some pretty large companies over the past couple of years, PepsiCo. being one of them, and it is moving toward first deliveries to other companies sometime in 2026.

Yesterday at the 2025 Annual Shareholder Meeting, Tesla unveiled its new Semi design, which underwent a pretty significant facelift to match the aesthetic and vibe of the other vehicles in the company’s lineup.

Additionally, Tesla announced some other improvements, including changes to efficiency, and some other changes that we did not get details on yet.

The first change was to the design of the Semi, as Tesla adopted its blade-like light bar for the Class 8 truck, similar to the one that is used on the new Model Y and the Cybertruck:

There also appear to be a handful of design changes that help with aerodynamics, as its efficiency has increased to 1.7 kWh per mile.

Tesla also said it has an increased payload capability, which will help companies to haul more goods per trip.

All of these changes come as the company’s Semi Factory, which is located on the same property as its Gigafactory in Reno, Nevada, is just finishing up. In late October, it was shown that the Semi facility is nearly complete, based on recent drone imagery from factory observer HinrichsZane on X:

Tesla Semi factory looks nearly complete

The factory will be capable of producing about 50,000 Tesla Semi units annually when it is completely ramped. The company has major plans to help get the Semi in more fleets across the United States.

Other entities are also working to develop a charging corridor for electric Class 8 trucks. The State of California was awarded $102 million to develop a charging corridor that spans from Washington to Southern California.

Another corridor is being developed that spans from Southern California to Texas, and 49 applicants won $636 million from the Department of Transportation for it.

Tesla requested funding for it, but was denied.

The Semi has been a staple in several companies’ fleets over the past few years, most notably that of Frito-Lay and PepsiCo., who have reported positive experiences thus far.

Musk said last year that the Semi had “ridiculous demand.”

Continue Reading

News

Tesla Cybercab production starts Q2 2026, Elon Musk confirms

Elon Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

Published

on

Credit: Tesla/X

Tesla CEO Elon Musk confirmed that production of the company’s autonomous Cybercab will begin in April 2026, and its production targets will be quite ambitious. 

Speaking at Tesla’s 2025 Annual Shareholder Meeting, Musk highlighted that the fully autonomous vehicle will be the first Tesla designed specifically for unsupervised self-driving.

A robotaxi built for an autonomous world

Musk described the Cybercab as a clean-slate design optimized for autonomy, with no steering wheel, pedals, or side mirrors. “It’s very much optimized for the lowest cost per mile in an autonomous mode,” Musk said, adding that every Tesla produced in recent years already carries the hardware needed for full self-driving.

The Cybercab will be assembled at Giga Texas and will serve as the company’s flagship entry into the commercial robotaxi market. Musk emphasized that the project represents Tesla’s next evolutionary step in combining vehicle manufacturing, artificial intelligence, and mobility services.

One Cybercab every ten seconds

Musk reiterated that the Cybercab’s production process is more closely modeled on consumer electronics assembly than on traditional automotive manufacturing. This should pave the way for outputs that far exceed conventional automotive products.

Advertisement

“That production is happening right here in this factory, and we’ll be starting production in April next year. The manufacturing system is unlike any other car. The manufacturing system of the Cybercab, it’s closer to a high volume consumer electronics device than it is a car manufacturing line. So the net result is that I think we should be able to achieve, I think, ultimately, less than a 10-second cycle time, basically a unit every 10 seconds.

“What that would mean is you could get on a line that would normally produce, say, 500,000 cars a year at a one minute cycle time, Model Y. This would be maybe as much as 2 million or 3 million, maybe ultimately it’s theoretically possible to achieve a 5 million unit production line if you can get to the 5-second cycle time,” the CEO said.

Continue Reading

Trending