Connect with us

SpaceX

SpaceX begins static Starhopper tests as Raptor engine arrives on schedule

SpaceX's second completed Raptor engine - serial number 2 (SN02) - arrived in Boca Chica on March 11th, right on time. (SpaceX, NASASpaceflight, bocachicagal)

Published

on

SpaceX has officially begun static ground testing of Starhopper, a full-scale pathfinder Starship prototype meant to support an early series of Raptor-powered hop tests at SpaceX’s South Texas launch site. Simultaneously, the second completed Raptor engine arrived at the site on Monday, March 11th, confirming CEO Elon Musk’s March 8th tweets about the delivery.

While reasonably routine for any rocket test program, the first tanking test of Starhopper effectively marks the first time that SpaceX has begun tests with a more or less fully integrated Starship (previously BFS). Likely performed with liquid nitrogen instead of liquid oxygen/methane, the first few tanking tests will be used to determine the quality of the prototype’s stainless steel tanks – built en plein air in a fairly unorthodox fashion – and test whether they are functional pressure vessels without risking immediate and total destruction. If successful, SpaceX will proceed into Raptor integration and integrated static-fire tests before preparing for tethered hover tests, perhaps as early as later this month.

In November 2016, SpaceX began propellant-loading tests of its first finished full-scale Starship (then Big Falcon Spaceship) hardware, a massive carbon composite liquid oxygen tank stretching 12 m (~40 ft) in diameter. Over the course of 2017, SpaceX transitioned from liquid nitrogen to liquid oxygen and ultimately conducted one final burst-test in which the composite tank was pressurized until it exploded, ending full-scale BFR composite testing with a bang. Within 6-12 months, Musk had come to the conclusion that a stainless steel BFR would ultimately be a superior path forward for the rocket and spaceship and attempted (apparently successfully) to get his team of R&D engineers on board with such a radical change so late in the development phase.

Despite the fact that that radical design departure may have occurred as few as 6-8 months ago, SpaceX engineers and technicians have accomplished an extremely rapid development program that will – in part – culminate in the hopefully successful hop testing of Starhopper, the first Starship prototype. While more of a rough testbed than an actual representation of the hardware and structures that will be required for a reusable orbital-class Starship, Starhopper has at least acted as a crash course (either technically or organizationally) on fabricating and assembling stainless steel aerospace structures, a material largely foreign to SpaceX flight hardware prior to late 2018.

Although the early vehicle was less than encouraging, as was the demise of its nosecone as a consequence of improper planning and/or bad workmanship, Starhopper as it now stands might actually be flightworthy in the context of suborbital, subsonic hop tests. Powered by the same or similar Raptors that would power orbital prototypes, Starhopper’s hop tests would optimally provide a wealth of experience and engineering data for both building 9 meter/30 foot-diameter stainless steel rocket sections and operating full-scale Raptor engine(s) in actual flight configurations. Extensive testing with Raptor will help to ensure that the fit and finish of the new engine’s flight-grade avionics and hardware are up to the challenge of safe, reliable, and gentle operations for a nominally crew-rated launch vehicle and spacecraft.

60 hours later, Musk was clearly not wrong.

Around two days after Starhopper was briskly transported from its build site to SpaceX’s brand new launch facility, local Twitter account @SPadre (short for South Padre Island) posted a video of tanking test that occurred on March 11th, capturing the sound of venting as the liquid involved turned to gas inside its propellant tank(s). The fact alone that the person behind the camera was allowed to be where they were during the test all but guarantees that this first test was performed with an inert liquid, most likely liquid nitrogen given a massive delivery that occurred the day before (March 10th). In no conceivable world would SpaceX or local law enforcement willingly allow for Starhopper to be loaded – for the first time ever – with even a partial load of liquid methane or liquid oxygen with bystanders barely a few hundred feet distant.

SpaceX accepted delivery of multiple truckloads of liquid nitrogen on March 10th, likely to support early tank loading tests to verify structural integrity and check for leaks. (NASASpaceflight – bocachicagal)

When SpaceX gets to the point that they are confident enough in the structural integrity of Starhopper to begin wet dress rehearsals and tests with actual propellant, it’s a safe bet that the company will cooperate with local law enforcement to block off the lone access road to a distance of at least 1-2 miles, if not more. It’s unclear if local homeowners and residents will be forced to vacate the adjacent Boca Chica Village during testing, but chances are good that nobody will be within several thousand feet of Starhopper when those propellant loading tests begin, let alone actual static fire activity once Raptor(s) are installed.

According to an official SpaceX statement on the progress, propellant load tests and static fires could begin “in the days ahead”, although the spokesperson was under the impression that those tests – as well as initial hop tests – “[would] not be visible from offsite”. Unless SpaceX plans to draw a keep-out zone with a radius of multiple miles, interested observers will almost certainly be able to get close enough to at least catch a glimpse of Starhopper, but the statement still offers an idea of just how focused the company will be on safety during these early tests.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

News

U.S. Judge dismisses lawsuit against SpaceX Starship Boca Chica launch site

The ruling found that the FAA had met its obligations in reviewing the potential environmental effects of Starship launches.

Published

on

(Credit: SpaceX)

A U.S. district court judge has dismissed a lawsuit brought by conservation groups challenging the Federal Aviation Administration’s approval of SpaceX’s expanded rocket launch operations in Boca Chica, Texas. 

The ruling, issued Monday, found that the FAA had met its obligations in reviewing the potential environmental effects of Starship launches.

FAA review withstands legal challenge

The lawsuit centered on whether the FAA properly assessed the impact of SpaceX’s operations on endangered wildlife, including ocelots, jaguarundis, and Kemp’s Ridley sea turtles, as noted in a report from The Guardian. The plaintiffs argued that noise, light pollution, and construction activity degraded the surrounding habitat, which also serves as nesting grounds for threatened shorebirds.

The lawsuit cited SpaceX’s April 2023 Starship test, which destroyed its launchpad and scattered debris across a large area. The blast reportedly ignited a grassfire and damaged wildlife habitats, including a bobwhite quail nest.

Judge Carl Nichols, for his part, ruled that the FAA had satisfied its obligation“to take a hard look at the effects of light on nearby wildlife.” The decision effectively cleared a regulatory hurdle for SpaceX, which has been working to expand Starship launch activity at its Boca Chica facility.

Advertisement

A continued ramp

SpaceX continues to scale its operations nationwide. Beyond Starship, the company is also seeking approval to nearly double Falcon rocket launches from Vandenberg Space Force Base in California, from 50 annually to 95. 

Former President Trump has also shared his intention to increase U.S. launch capacity, setting a target for substantial growth by 2030. Considering that SpaceX is by far the world’s dominant launch provider, Trump’s support for more launches will likely benefit the private space company.

For now, at least, the ruling should allow continued expansion at a time when Starship remains central to long-term goals such as Mars missions and NASA’s Artemis program.

Continue Reading

Elon Musk

SpaceX to expand Central Texas facility with $8M Bastrop project

Bastrop is already the site of several Elon Musk-led ventures.

Published

on

Credit: SpaceX

SpaceX is set to expand its presence in Central Texas with an $8 million project to enlarge its Bastrop facility, as per state filings. 

The 80,000-square-foot addition, which is scheduled to begin construction on September 24 and wrap in early January 2026, was registered with the Texas Department of Licensing and Regulation and initially reported by My San Antonio

New investment

Bastrop is already the site of several Elon Musk-led ventures. The upcoming expansion will extend SpaceX’s office at 858 FM 1209, near Starlink’s operations and The Boring Company’s facilities. Just down the road, X is housed in the Hyperloop Plaza at 865 FM 1209.

SpaceX’s expansion reflects a steady buildup of resources in Bastrop since the private space firm established its presence in the area. The addition was praised by Tesla Governor Greg Abbott, who wrote on X that the expansion will “bring more jobs, innovations and will strengthen Starlink’s impact worldwide.” 

State support

In March, Gov. Greg Abbott announced a $17.3 million state grant to SpaceX for an “expansion of their semiconductor research and development (R&D) and advanced packaging facility in Bastrop.” The project is expected to create more than 400 new jobs and generate over $280 million in capital investment.

Advertisement

Following the grant award, the Texas Governor also noted that SpaceX’s facility would be growing by 1 million square feet across three years to boost its Starlink program. SpaceX’s Starlink division is among the company’s fastest-growing segments, with the satellite internet system connecting over 6 million users and counting worldwide. 

Recent reports have also indicated that Starlink has struck a deal with EchoStar to acquire 50 MHz of exclusive S-band spectrum in the United States and global Mobile Satellite Service (MSS) licenses. This should pave the way for Starlink to provide 5G coverage worldwide, even in remote areas. 

Continue Reading

Elon Musk

Starlink’s EchoStar spectrum deal could bring 5G coverage anywhere

The agreement strengthens Starlink’s ability to expand its mobile coverage worldwide.

Published

on

Credit: SpaceX/X

SpaceX has struck a deal with EchoStar to acquire 50 MHz of exclusive S-band spectrum in the United States and global Mobile Satellite Service (MSS) licenses, paving the way for its next-generation Starlink Direct to Cell constellation. 

The agreement strengthens Starlink’s ability to expand its mobile coverage worldwide. With the upgraded system, SpaceX aims to deliver full 5G connectivity to unmodified cell phones and eliminate mobile dead zones worldwide.

Expanding mobile coverage

Starlink’s Direct to Cell service was first launched in early 2024 with satellites designed to connect directly to standard LTE mobile devices. Within days of deployment, engineers demonstrated texting from unmodified phones, followed by video calling. Over the past 18 months, SpaceX has grown the system to more than 600 satellites, which now offer service across five continents. Today, Starlink Direct to Cell is considered the largest 4G coverage provider worldwide, connecting over 6 million users and counting, according to SpaceX in a post.

The constellation integrates with Starlink’s broader fleet of 8,000 satellites via a laser mesh network. Operating at 360 kilometers (224 miles) above Earth, the satellites connect directly to devices without hardware or firmware modifications. The system is already supporting messaging, video calls, navigation, social media apps, and IoT connectivity in remote areas.

Next-generation system

Through its new EchoStar spectrum acquisition, SpaceX plans to develop a second-generation constellation with far greater capacity. The upgraded satellites will leverage SpaceX-designed silicon and advanced phased array antennas to increase throughput by 20x per satellite and increase total system capacity by more than 100x. These enhancements are expected to support full 5G cellular connectivity in remote areas, with performance comparable to terrestrial LTE networks.

Advertisement

Partnerships with major mobile carriers remain central to Starlink’s expansion. Operators including T-Mobile in the United States, Rogers in Canada, KDDI in Japan, and Kyivstar in Ukraine are integrating Direct to Cell services for coverage in rural areas and during emergencies. The service has already provided critical communication during hurricanes, floods, and wildfires, enabling millions of SMS messages and emergency alerts to be delivered when ground networks were unavailable.

Continue Reading

Trending