Connect with us

News

SpaceX aces fourth Starship flight test

Starship launches on its 4th flight test (Credit SpaceX)

Published

on

SpaceX successfully launched and landed its Super Heavy booster and Starship on its fourth integrated flight test, with each making a soft splashdown in the water.

Starship took to the skies at 7:50 am CT from a foggy Starbase, Texas, in an effort to surpass previous flight milestones.

As the countdown hit zero, 32 of 33 Raptor engines on the Super Heavy booster lit, with the outlier being an engine on the outer ring. Despite the engine out, the booster still ascended with ease away from the launch mount and broke through the thick fog into clear blue skies with views streamed back to the ground from just above one of the grid fins.

Advertisement

As Starship climbed, everything continued to operate nominally all the way through the hot staging which saw Super Heavy Booster 11 shut down all but its 3 center Raptor engines as Starship 29 lit its 6 Raptor engines to pull away from the massive booster. As soon as Starship was clear, Booster 11 completed a flip and boostback burn to begin its trip for a planned soft touchdown in the Gulf of Mexico by relighting 10 Raptor engines.

Once the boostback burn was complete, the hot staging ring was ejected to reduce the overall mass of the booster to help it survive reentry and landing. Future Super Heavy boosters will feature a lighter hot staging ring that will not be ejected. As the booster made its way back, it re-orientated to vertical and began re-entry back through the atmosphere, and unlike the Falcon 9, it does not perform an entry burn.

At around 7 minutes and 15 seconds into flight, the Super Heavy booster lit 12 out of a planned 13 engines for its landing burn, followed shortly by quite a bit of debris flying by the onboard camera, but it did not affect anything critical as seconds later Booster 11 made a successful splashdown in the Gulf of Mexico before a slow planned tip over into the water.

Advertisement

As Booster 11 completed the first successful soft landing, Starship 29 fired its six Raptor engines, three sea level and three vacuum, with engine shutoff coming in at eight and a half minutes into flight. The starship then entered a long coast phase as it passed between the Florida Keys and Cuba and transited over the Atlantic Ocean, followed by Africa.

During IFT-3, live views were provided for a majority of this portion but due to an unknown issue, cameras didn’t come back until just before 37 minutes into the flight. Elon Musk posted on X that they had a data signal the entire time including live views from internal cameras.

45 minutes into the flight, the true test of Starship began as plasma started to build up, but this time, Starship was in the correct orientation, and the heatshield was facing the correct way to give the ship its best chance at survival.

Advertisement

As Starship descended, plasma build-up increased with callouts from mission control noting rising temperatures on the nose but all within acceptable limits. At just over 54 minutes into the flight, Starship made it further than the third flight test and into unknown territory.

Plasma builds up as Starship re-enters the atmosphere (Credit SpaceX)

57 minutes into the flight, peak heating had passed but tiles were starting to fall away from the forward flap followed by melting of the lower portion, despite this damage, Starship held strong and in the correct orientation as it descended.

Starship continued its descent and, with significant damage, still made it through to its own landing burn and performed its flip to a vertical orientation and a soft touchdown in the Indian Ocean west of Australia.

Damage to the forward flap as seen during the landing burn (Credit SpaceX)

Even with the damage inflicted on Starship, it completed all test objectives while providing SpaceX with incredibly valuable data that will be used to make the ship stronger on future test flights. The Starlink antenna also survived the entire flight which ensured this data made it back to mission control.

With this successful mission complete, SpaceX could launch the 5th flight by mid to late July and possibly even attempt a catch of the Super Heavy booster according to Elon Musk.

Catch a replay of this epic mission below!

How do you think this flight went overall, and will the fifth flight take place by August?

Questions or comments? Shoot me an email at rangle@teslarati.com, or Tweet me @RDAnglePhoto.

News

This signature Tesla feature is facing a ban in one of its biggest markets

The report indicates that Chinese government agencies have concerns “about failure rates and safety issues with the flush design.”

Published

on

A signature Tesla feature is under fire in one of the company’s largest markets, as regulators in one EV hot spot are mulling the potential ban of a design the automaker implemented on some of its vehicles.

Tesla pioneered the pop-out door handle on its Model S back in 2012, and CEO Elon Musk felt the self-presenting design was a great way to feel like “you’re part of the future.”

It is something that is still present on current Model S designs, while other vehicles in the Tesla lineup have a variety of handle aesthetics.

How to repair your Tesla Model S Door handle (DIY Kit)

According to Chinese media outlet Mingjing Pro, the company, along with others using similar technology, is facing scrutiny on the design as regulators consider a ban on the mechanism. These restrictions would impact other companies that have utilized pop-out handles on their own designs; Tesla would not be the only company forced to make changes.

Advertisement

The report indicates that Chinese government agencies have concerns “about failure rates and safety issues with the flush design.”

However, EVs are designed to be as aerodynamically efficient as possible, which is the main reason for this design. It is also the reason that many EVs utilize wheel covers, and sleek and flowing shapes.

However, the Chinese government is not convinced, as they stated the aerodynamic improvements are “minimal,” and safety issues are “significantly elevated,” according to The Independent.

The issue also seems to be focused on how effective the handle design is. According to data, one EV manufacturer, which was not specified in the report, has 12 percent of its total repairs are door handle failure fixes.

There are also concerns about the handles short-circuiting, leaving passengers trapped within cars. Tesla has implemented emergency latch releases in its vehicles that would prevent passengers from getting stuck in their cars in cases of electric malfunctions or failures.

Advertisement

However, evidence from the Chinese Insurance Automotive Technology Research Institute (C-IASI) suggests that 33 percent of door handles using this design fail to function after a side impact.

Obviously, Tesla and other automakers could introduce an alternative design to those vehicles that are affected by the potential restrictions China intends to impose. The regulation would take effect in July 2027.

Continue Reading

News

Tesla is bailing out Canadian automakers once again: here’s how

Published

on

(Credit: Tesla)

Tesla is bailing out Canadian automakers once again, as some companies in the country are consistently failing to reach mandated minimum sales targets for emission-free vehicles.

Many countries and regions across the world have enacted mandates that require car companies to sell a certain percentage of electric powertrains each year in an effort to make sustainable transportation more popular.

These mandates are specifically to help reduce the environmental impacts of gas-powered cars. In Canada, 20 percent of new car sales in the 2026 model year must be of an emissions-free powertrain. This number will eventually increase to 100 percent of sales by 2030, or else automakers will pay a substantial fine — $20,000 per vehicle.

There is a way companies can avoid fines, and it involves purchasing credits from companies that have a surplus of emissions-free sales.

Tesla is the only company with this surplus, so it will be bailing out a significant number of other automakers that have fallen short of reaching their emissions targets.

Advertisement

Brian Kingston, CEO of the Canadian Vehicle Manufacturers’ Association, said (via Yahoo):

“The only manufacturer that would have a surplus of credits is Tesla, because all they do is sell electric vehicles. A manufacturer has to enter into an agreement with them to purchase credits to help them meet the mandate.”

Tesla has made just over $1 billion this year alone in automotive regulatory credits, which is revenue acquired from selling these to lagging car companies. Kingstone believes Tesla could be looking at roughly $3 billion in credit purchases to comply with the global regulations.

Tesla still poised to earn $3B in ZEV credits this year: Piper Sandler

Automakers operating in Canada are not putting in a lack of effort, but their slow pace in gaining traction in the EV space is a more relevant issue. Execution is where these companies are falling short, and Tesla is a beneficiary of their slow progress.

Advertisement

Kingston doesn’t believe the mandates are necessarily constructive:

“We’ve seen over $40 billion in new investment into Canada since 2020 and all signs were pointing to the automotive industry thriving. Now the federal government has regulations that specifically punishes companies that have a footprint here, requiring them to purchase credits from a company that has a minimal (Canadian) footprint and an almost nonexistent employee base.”

Kingston raises a valid point, but it is hard to see how Tesla is to blame for the issue of other car companies struggling to bring attractive, high-tech, and effective electric powertrains to market.

Tesla has continued to establish itself as the most technologically advanced company in terms of EVs and its tech, as it still offers the best product and has also established the most widespread charging infrastructure globally.

This is not to say other companies do not have good products. In my personal experience, Teslas are just more user-friendly, intuitive, and convenient.

Advertisement
Continue Reading

Cybertruck

Tesla ditches key Cybertruck charging feature for very obvious reason

“Wireless charging something as far off the ground as the [Cybertruck] is silly.”

Published

on

Credit: Tesla

Tesla is officially ditching the development of a key Cybertruck charging feature, and the reason is very obvious, all things considered.

The Cybertruck is among the most unique vehicles available on the market, and, like all Tesla vehicles, it has continued to improve through Over-the-Air software updates that enhance performance, safety, and other technological features.

However, the development of some features, while great on paper, turns out to be more difficult than expected. One of these features is the presence of wireless charging on the all-electric pickup, a capability Tesla has been working to integrate across its entire vehicle lineup.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

Most people who have used wireless charging for their phones or other devices have realized it is not as effective as plugging into a cord or cable. This is even relevant with Tesla vehicles, as the introduction of wireless charging for smartphones within the vehicles has been a nice feature, but not as impactful as many would hope.

Advertisement

It’s not necessarily Tesla’s fault, either. Wireless charging is a complex technology because much of the energy intended to be transferred to the phone is lost through heat.

Instead of the energy being stored in the battery, it is lost on the outside of the phone, which is why it becomes warm to the touch after sitting on a charging mat.

This is something that Tesla is likely trying to resolve with its vehicles before rolling out inductive charging to owners. The company has confirmed that it is working on a wireless charging solution, but it has yet to be released.

However, this feature will not be coming to the Cybertruck. Wes Morrill, the Cybertruck’s lead engineer, said that the vehicle’s height makes wireless charging “silly,” according to Not a Tesla App:

“Wireless charging something as far off the ground as the CT is silly.”

Advertisement

This is something that could impact future vehicle designs; the Cybertruck might not be the only higher-ground clearance vehicle Tesla plans to offer to customers. Therefore, being transparent about a design’s capabilities, or even developing technology that would enable this, would be useful to potential buyers.

At this point, wireless charging seems like it would be more advantageous for home charging than anything.

Due to its current inefficiency, it would likely be a great way to enable seamless charging in a garage or residential parking space, rather than something like a public charger where people are looking to plug and go in as little time as possible.

Continue Reading

Trending