News
SpaceX aces fourth Starship flight test
SpaceX successfully launched and landed its Super Heavy booster and Starship on its fourth integrated flight test, with each making a soft splashdown in the water.
Starship took to the skies at 7:50 am CT from a foggy Starbase, Texas, in an effort to surpass previous flight milestones.
Liftoff of Starship! pic.twitter.com/2Z1PdNPYPG
— SpaceX (@SpaceX) June 6, 2024
As the countdown hit zero, 32 of 33 Raptor engines on the Super Heavy booster lit, with the outlier being an engine on the outer ring. Despite the engine out, the booster still ascended with ease away from the launch mount and broke through the thick fog into clear blue skies with views streamed back to the ground from just above one of the grid fins.
As Starship climbed, everything continued to operate nominally all the way through the hot staging which saw Super Heavy Booster 11 shut down all but its 3 center Raptor engines as Starship 29 lit its 6 Raptor engines to pull away from the massive booster. As soon as Starship was clear, Booster 11 completed a flip and boostback burn to begin its trip for a planned soft touchdown in the Gulf of Mexico by relighting 10 Raptor engines.
Once the boostback burn was complete, the hot staging ring was ejected to reduce the overall mass of the booster to help it survive reentry and landing. Future Super Heavy boosters will feature a lighter hot staging ring that will not be ejected. As the booster made its way back, it re-orientated to vertical and began re-entry back through the atmosphere, and unlike the Falcon 9, it does not perform an entry burn.
Hot stage jettison pic.twitter.com/J48QtQD1Ae
— SpaceX (@SpaceX) June 6, 2024
At around 7 minutes and 15 seconds into flight, the Super Heavy booster lit 12 out of a planned 13 engines for its landing burn, followed shortly by quite a bit of debris flying by the onboard camera, but it did not affect anything critical as seconds later Booster 11 made a successful splashdown in the Gulf of Mexico before a slow planned tip over into the water.
Super Heavy has splashed down in the Gulf of Mexico pic.twitter.com/hIY3Gkq57k
— SpaceX (@SpaceX) June 6, 2024
As Booster 11 completed the first successful soft landing, Starship 29 fired its six Raptor engines, three sea level and three vacuum, with engine shutoff coming in at eight and a half minutes into flight. The starship then entered a long coast phase as it passed between the Florida Keys and Cuba and transited over the Atlantic Ocean, followed by Africa.
During IFT-3, live views were provided for a majority of this portion but due to an unknown issue, cameras didn’t come back until just before 37 minutes into the flight. Elon Musk posted on X that they had a data signal the entire time including live views from internal cameras.
45 minutes into the flight, the true test of Starship began as plasma started to build up, but this time, Starship was in the correct orientation, and the heatshield was facing the correct way to give the ship its best chance at survival.
As Starship descended, plasma build-up increased with callouts from mission control noting rising temperatures on the nose but all within acceptable limits. At just over 54 minutes into the flight, Starship made it further than the third flight test and into unknown territory.
Plasma builds up as Starship re-enters the atmosphere (Credit SpaceX)
57 minutes into the flight, peak heating had passed but tiles were starting to fall away from the forward flap followed by melting of the lower portion, despite this damage, Starship held strong and in the correct orientation as it descended.
Starship continued its descent and, with significant damage, still made it through to its own landing burn and performed its flip to a vertical orientation and a soft touchdown in the Indian Ocean west of Australia.
Damage to the forward flap as seen during the landing burn (Credit SpaceX)
Even with the damage inflicted on Starship, it completed all test objectives while providing SpaceX with incredibly valuable data that will be used to make the ship stronger on future test flights. The Starlink antenna also survived the entire flight which ensured this data made it back to mission control.
With this successful mission complete, SpaceX could launch the 5th flight by mid to late July and possibly even attempt a catch of the Super Heavy booster according to Elon Musk.
Catch a replay of this epic mission below!
Watch Starship’s fourth flight test → https://t.co/bJFjLCiTbK https://t.co/SjpjscHoUB
— SpaceX (@SpaceX) June 6, 2024
How do you think this flight went overall, and will the fifth flight take place by August?
Questions or comments? Shoot me an email at rangle@teslarati.com, or Tweet me @RDAnglePhoto.
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.
News
Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.
A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity.
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.
Samsung’s 5G modem
As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.
Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.
The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.
Deepening Tesla–Samsung ties
The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.
Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.
Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.