News
SpaceX aces fourth Starship flight test
SpaceX successfully launched and landed its Super Heavy booster and Starship on its fourth integrated flight test, with each making a soft splashdown in the water.
Starship took to the skies at 7:50 am CT from a foggy Starbase, Texas, in an effort to surpass previous flight milestones.
Liftoff of Starship! pic.twitter.com/2Z1PdNPYPG
— SpaceX (@SpaceX) June 6, 2024
As the countdown hit zero, 32 of 33 Raptor engines on the Super Heavy booster lit, with the outlier being an engine on the outer ring. Despite the engine out, the booster still ascended with ease away from the launch mount and broke through the thick fog into clear blue skies with views streamed back to the ground from just above one of the grid fins.
As Starship climbed, everything continued to operate nominally all the way through the hot staging which saw Super Heavy Booster 11 shut down all but its 3 center Raptor engines as Starship 29 lit its 6 Raptor engines to pull away from the massive booster. As soon as Starship was clear, Booster 11 completed a flip and boostback burn to begin its trip for a planned soft touchdown in the Gulf of Mexico by relighting 10 Raptor engines.
Once the boostback burn was complete, the hot staging ring was ejected to reduce the overall mass of the booster to help it survive reentry and landing. Future Super Heavy boosters will feature a lighter hot staging ring that will not be ejected. As the booster made its way back, it re-orientated to vertical and began re-entry back through the atmosphere, and unlike the Falcon 9, it does not perform an entry burn.
Hot stage jettison pic.twitter.com/J48QtQD1Ae
— SpaceX (@SpaceX) June 6, 2024
At around 7 minutes and 15 seconds into flight, the Super Heavy booster lit 12 out of a planned 13 engines for its landing burn, followed shortly by quite a bit of debris flying by the onboard camera, but it did not affect anything critical as seconds later Booster 11 made a successful splashdown in the Gulf of Mexico before a slow planned tip over into the water.
Super Heavy has splashed down in the Gulf of Mexico pic.twitter.com/hIY3Gkq57k
— SpaceX (@SpaceX) June 6, 2024
As Booster 11 completed the first successful soft landing, Starship 29 fired its six Raptor engines, three sea level and three vacuum, with engine shutoff coming in at eight and a half minutes into flight. The starship then entered a long coast phase as it passed between the Florida Keys and Cuba and transited over the Atlantic Ocean, followed by Africa.
During IFT-3, live views were provided for a majority of this portion but due to an unknown issue, cameras didn’t come back until just before 37 minutes into the flight. Elon Musk posted on X that they had a data signal the entire time including live views from internal cameras.
45 minutes into the flight, the true test of Starship began as plasma started to build up, but this time, Starship was in the correct orientation, and the heatshield was facing the correct way to give the ship its best chance at survival.
As Starship descended, plasma build-up increased with callouts from mission control noting rising temperatures on the nose but all within acceptable limits. At just over 54 minutes into the flight, Starship made it further than the third flight test and into unknown territory.
Plasma builds up as Starship re-enters the atmosphere (Credit SpaceX)
57 minutes into the flight, peak heating had passed but tiles were starting to fall away from the forward flap followed by melting of the lower portion, despite this damage, Starship held strong and in the correct orientation as it descended.
Starship continued its descent and, with significant damage, still made it through to its own landing burn and performed its flip to a vertical orientation and a soft touchdown in the Indian Ocean west of Australia.
Damage to the forward flap as seen during the landing burn (Credit SpaceX)
Even with the damage inflicted on Starship, it completed all test objectives while providing SpaceX with incredibly valuable data that will be used to make the ship stronger on future test flights. The Starlink antenna also survived the entire flight which ensured this data made it back to mission control.
With this successful mission complete, SpaceX could launch the 5th flight by mid to late July and possibly even attempt a catch of the Super Heavy booster according to Elon Musk.
Catch a replay of this epic mission below!
Watch Starship’s fourth flight test → https://t.co/bJFjLCiTbK https://t.co/SjpjscHoUB
— SpaceX (@SpaceX) June 6, 2024
How do you think this flight went overall, and will the fifth flight take place by August?
Questions or comments? Shoot me an email at rangle@teslarati.com, or Tweet me @RDAnglePhoto.
News
Elon Musk makes a key Tesla Optimus detail official
“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.
Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot.
Elon Musk makes Optimus’ plural term official
Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets.
Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X.
This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too.
Optimi will be a common sight worldwide
While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot.
During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
