SpaceX
NASA and SpaceX will determine fate of Crew Dragon launch debut this Friday
Although the chances of additional delays are high, the orbital launch debut of SpaceX’s Crew Dragon spacecraft remains stoically targeted for 2:47 am EDT (07:47 UTC) on March 2nd, less than ten days from today.
Known as DM-1, the unproven SpaceX vehicle’s autonomous demonstration mission is a critical milestone along the road to assured US access to the International Space Station (ISS), without which NASA will be forced to continue procuring seats on Russian Soyuz missions with aggressively inflated price tags. If everything goes exactly as planned, a successful DM-1 could translate into the company’s first crewed launch as early as July 2019.
Targeting March 2 for Crew Dragon's first flight to the @Space_Station https://t.co/oJRtDhV3aL pic.twitter.com/lLw1FJHLvI
— SpaceX (@SpaceX) February 6, 2019
Following a nominal mission plan, the first spaceworthy Crew Dragon will dock with the ISS a little over 24 hours after launch (March 3rd) with around 180 kg (400 lb) of cargo for the station’s six-astronaut crew. Five days later (March 8th), Crew Dragon will depart from the ISS, detach its expendable trunk, and reenter Earth’s atmosphere for a soft landing in the Atlantic Ocean. Throughout these operations, ISS astronauts, NASA technicians and operators, and a range of SpaceX employees will conduct extensive observations and tests of the new spacecraft’s performance during all mission phases, ranging from on-orbit docking (a new technology for SpaceX) to Atlantic Ocean recovery operations.
Once the capsule has been extricated from the ocean, SpaceX’s spacecraft refurbishment technicians will be faced with an extraordinary challenge, upon which the date of Crew Dragon’s first crewed launch will directly hinge. Assuming splashdown ops are nominal and Dragon is returned safely to Florida, it’s safe to assume that SpaceX will transport the spacecraft to its Hawthorne factory, at which point its engineers and technicians will have roughly two months to prepare it for another launch. Known as an in-flight abort (IFA) test, SpaceX specifically opted to perform the spacecraft safety check despite the fact that NASA did not explicitly require its commercial providers (Boeing and SpaceX) to do so. SpaceX completed Crew Dragon’s pad abort test – required by NASA – almost four years ago, while Boeing will not perform an in-flight abort before launching astronauts and has its pad abort scheduled no earlier than (NET) May 2019.
- Falcon 9 B1051 has spent several months testing at SpaceX’s McGregor, Texas facilities in preparation for DM-1. (SpaceX)
- The first orbit-ready Crew Dragon spacecraft stands beside its human-rated Falcon 9, December 2018. (SpaceX)
- Crew Dragon shows off its conformal (i.e. curved) solar array while connected to SpaceX’s sleek Crew Access Arm (CAA). (SpaceX)
- SpaceX completed a successful static fire of the first Falcon 9 rated for human flight on January 24th. (SpaceX)
SpaceX’s IFA test is designed to verify that Crew Dragon is capable of safely extricating its astronaut passengers from a failing rocket at the point of peak aerodynamic (and thus mechanical) stress during launch, known as Max Q. Combined with a pad abort demonstration, where the above situation is replicated but with the rocket and spacecraft motionless on the launch pad, the engineering assumption is that successful aborts at both standstill and Max Q verify that a given spacecraft has proven that it can essentially abort and carry astronauts to safety at any point during launch.
“The launch scenario where an abort is initiated during the ascent trajectory at the maximum dynamic pressure (known as max Q) is a design driver for the launch abort system. It dictates the highest thrust and minimum relative acceleration required between Falcon 9 and the aborting Dragon … Dragon would separate from Falcon 9 at the interface between the trunk and the second stage… Under these conditions, the Falcon 9 vehicle would become uncontrollable and would break apart.” – SpaceX FAA permit, 2018
Aside from a boilerplate Merlin Vacuum engine on the second stage, SpaceX’s IFA test is set to fly on real Falcon 9 hardware that will almost certainly be consigned to total destruction at the point of abort, around 90 seconds after launch. SpaceX’s decision to expend an entirely flightworthy Falcon 9 Block 5 rocket – featuring a booster capable of supporting anywhere from 5-100 lifetime missions – is a tangible demonstration of the company’s commitment to crew safety above all else, although NASA will either partially or fully compensate SpaceX for the milestone. Set to occur no earlier than June 2019, the IFA schedule is explicitly constrained by the successful launch and recovery of Crew Dragon after DM-1 – any delays to that mission will likely translate into IFA delays, which will translate into delays for the first crewed mission (DM-2).

SpaceX’s Cargo Dragon engineers and technicians have a solid amount of experience refurbishing the spacecraft for cargo missions to the ISS, although the average turnaround for flight-proven capsules currently stands around 18-24 months, not exactly on the heels of the 2-3 months currently alotted for the first Crew Dragon. Thanks to the fact that the IFA Crew Dragon does not need to be refurbished to the standards of orbital flight for its second launch, it’s at least conceivable that that aspirational schedule is within reach. SpaceX’s first crewed demonstration mission (DM-2) could occur as early as one month after a successful IFA (July 2019), pending the completion of joint NASA-SpaceX readiness reviews.
Known as flight readiness reviews (FRRs), those joint reviews are no less significant for DM-1, even if they likely are underwhelmingly marked by a copious amount of slideshow presentations and sitting around tables in meeting rooms. The purpose of the reviews (at least nominally) is to essentially have SpaceX attempt to convince NASA (as empirically as possible) that they are ready to launch Crew Dragon. According to NASA, that review will end NET 6pm EDT (23:00 UTC) on February 22nd, followed one hour later by an official press conference featuring NASA and SpaceX officials.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!
Elon Musk
Elon Musk confirms SpaceX is not developing a phone
Despite many recent rumors and various reports, Elon Musk confirmed today that SpaceX is not developing a phone based on Starlink, not once, but twice.
Today’s report from Reuters cited people familiar with the matter and stated internal discussions have seen SpaceX executives mulling the idea of building a mobile device that would connect directly to the Starlink satellite constellation.
Musk did state in late January that SpaceX developing a phone was “not out of the question at some point.” However, He also said it would have to be a major difference from current phones, and would be optimized “purely for running max performance/watt neural nets.”
Not out of the question at some point. It would be a very different device than current phones. Optimized purely for running max performance/watt neural nets.
— Elon Musk (@elonmusk) January 30, 2026
While Musk said it was not out of the question “at some point,” that does not mean it is currently a project SpaceX is working on. The CEO reaffirmed this point twice on X this afternoon.
Musk said, “Reuters lies relentlessly,” in one post. In the next, he explicitly stated, “We are not developing a phone.”
Reuters lies relentlessly
— Elon Musk (@elonmusk) February 5, 2026
We are not developing a phone
— Elon Musk (@elonmusk) February 5, 2026
Musk has basically always maintained that SpaceX has too many things going on, denying that a phone would be in the realm of upcoming projects. There are too many things in the works for Musk’s space exploration company, most notably the recent merger with xAI.
SpaceX officially acquires xAI, merging rockets with AI expertise
A Starlink phone would be an excellent idea, especially considering that SpaceX operates 9,500 satellites, serving over 9 million users worldwide. 650 of those satellites are dedicated to the company’s direct-to-device initiative, which provides cellular coverage on a global scale.
Nevertheless, there is the potential that the Starlink phone eventually become a project SpaceX works on. However, it is not currently in the scope of what the company needs to develop, so things are more focused on that as of right now.
Elon Musk
Will Tesla join the fold? Predicting a triple merger with SpaceX and xAI
With the news of a merger between SpaceX and xAI being confirmed earlier this week by CEO Elon Musk directly, the first moves of an umbrella company that combines all of the serial tech entrepreneur’s companies have been established.
The move aims to combine SpaceX’s prowess in launches with xAI’s expanding vision in artificial intelligence, as Musk has detailed the need for space-based data centers that will require massive amounts of energy to operate.
It has always been in the plans to bring Musk’s companies together under one umbrella.
“My companies are, surprisingly in some ways, trending toward convergence,” Musk said in November. With SpaceX and xAI moving together, many are questioning when Tesla will be next. Analysts believe it is a no-brainer.
SpaceX officially acquires xAI, merging rockets with AI expertise
Dan Ives of Wedbush wrote in a note earlier this week that there is a “growing chance” Tesla could be merged in some form with the new conglomeration over the next 12 to 18 months.
“In our view, there is a growing chance that Tesla will eventually be merged in some form into SpaceX/xAI over time. The viewis this growing AI ecosystem will focus on Space and Earth together… and Musk will look to combine forces,” Ives said.
Let’s take a look at the potential.
The Case for Synergies – Building the Ultimate AI Ecosystem
A triple merger would create a unified “Musk Trinity,” blending Tesla’s physical AI with Robotaxi, Optimus, and Full Self-Driving, SpaceX’s orbital infrastructure through Starlink and potential space-based computer, and xAI’s advanced models, including Grok.
This could accelerate real-world AI applications, more specifically, ones like using satellite networks for global autonomy, or even powering massive training through solar-optimized orbital data centers.
The FCC welcomes and now seeks comment on the SpaceX application for Orbital Data Centers.
The proposed system would serve as a first step towards becoming a Kardashev II-level civilization and serve other purposes, according to the applicant. pic.twitter.com/TDnUPuz9w7
— Brendan Carr (@BrendanCarrFCC) February 4, 2026
This would position the entity, which could ultimately be labeled “X,” as a leader in multiplanetary AI-native tech.
It would impact every level of Musk’s AI-based vision for the future, from passenger use to complex AI training models.
Financial and Structural Incentives — and Risks
xAI’s high cash burn rate is now backed by SpaceX’s massive valuation boost, and Tesla joining the merger would help the company gain access to private funding channels, avoiding dilution in a public-heavy structure.
The deal makes sense from a capital standpoint, as it is an advantage for each company in its own specific way, addressing specific needs.
Because xAI is spending money at an accelerating rate due to its massive compute needs, SpaceX provides a bit of a “lifeline” by redirecting its growing cash flows toward AI ambitions without the need for constant external fundraising.
Additionally, Tesla’s recent $2 billion investment in xAI also ties in, as its own heavy CapEx for Dojo supercomputers, Robotaxis, and Optimus could potentially be streamlined.
Musk’s stake in Tesla and SpaceX, after the xAI merger, is also uneven. His ownership in Tesla equates to about 13 percent, only increasing as he achieves each tranche of his most recent compensation package. Meanwhile, he owns about 43 percent of the private SpaceX.
A triple merger between the three companies could boost his ownership in the combined entity to around 26 percent. This would give Musk what he wants: stronger voting power and alignment across his ventures.
It could also be a potential facilitator in private-to-public transitions, as a reverse merger structure to take SpaceX public indirectly via Tesla could be used. This avoids any IPO scrutiny while accessing the public markets’ liquidity.
Timeline and Triggers for a Public Announcement
As previously mentioned, Ives believes a 12-18 month timeline is realistic, fueled by Musk’s repeated hints at convergence between his three companies. Additionally, the recent xAI investment by Tesla only points toward the increased potential for a conglomeration.
Of course, there is speculation that the merger could happen in the shorter term, before June 30 of this year, which is a legitimate possibility. While this possibility exists but remains at low probability, especially when driven by rapid AI/space momentum, longer horizons, like 2027 or later, allow for key milestones like Tesla’s Robotaxi rollout and Cybercab ramp-up, Optimus scaling, or regulatory clarity under a favorable administration.

Credit: Grok Imagine
The sequencing matters: SpaceX-xAI merger as “step one” toward a unified stack, with a potential SpaceX IPO setting a valuation benchmark before any Tesla tie-up.
Full triple convergence could follow if synergies prove out.
Prediction markets are also a reasonable thing to look at, just to get an idea of where people are putting their money. Polymarket, for example, sits at between a 12 and 24 percent chance that a Tesla-SpaceX merger is officially announced before June 30, 2026.
Looking Ahead
The SpaceX-xAI merger is not your typical corporate shuffle. Instead, it’s the clearest signal yet that Musk is architecting a unified “Muskonomy” where AI, space infrastructure, and real-world robotics converge to solve humanity’s biggest challenges.
Yet the path is fraught with execution risks that could turn this visionary upside into a major value trap. Valuation mismatches remain at the forefront of this skepticism: Tesla’s public multiples are unlike any company ever, with many believing they are “stretched.” On the other hand, SpaceX-xAI’s private “marked-to-muth” pricing hinges on unproven synergies and lofty projects, especially orbital data centers and all of the things Musk and Co. will have to figure out along the way.
Ultimately, the entire thing relies on a high-conviction bet on Musk’s ability to execute at scale. The bullish case is transformative: a vertically integrated AI-space-robotics giant accelerates humanity toward abundance and multi-planetary civilization faster than any siloed company could.
Elon Musk
SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report
The update was reportedly shared to Reuters by people familiar with the matter.
SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone.
The update was reportedly shared to Reuters by people familiar with the matter.
A possible Starlink Phone
As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.
SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.
Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.”
Starlink and SpaceX’s revenue
Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.
SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.
Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”



