Connect with us

News

SpaceX set to launch reused Dragon on a new Falcon 9 as NASA requests delay

Falcon 9 B1050 lifts off during the first Block 5 launch of Cargo Dragon.(Tom Cross)

Published

on

An electrical fault aboard the International Space Station (ISS) has forced NASA to delay SpaceX’s CRS-17 Cargo Dragon launch from May 1st to May 3rd, giving the station’s crew more time to fix the issues at hand.

A new Falcon 9 Block 5 booster is tasked with launching the spacecraft and completed a static fire test at SpaceX’s LC-40 pad on April 27th. The Cargo Dragon capsule, however, completed its first orbital resupply mission (CRS-12) in September 2017 and has since been refurbished for a second launch. After CRS-17, three launches remain on SpaceX’s CRS1 NASA contract between now and early 2020, after which Dragon 2 (i.e. Crew Dragon) is expected to take over. However, a recent failure during a Crew Dragon test have thrown those plans into question.

Cargo Dragon’s 17th mission

Known as C113, the CRS-12 capsule is the last Dragon 1 manufactured by SpaceX, leaving a fleet of five flight-proven spacecraft for SpaceX to complete the eight remaining ISS resupply missions under its Commercial Resupply Services 1 (CRS1) contract. CRS-17 is the latest installment in SpaceX’s ISS resupply saga and is manifested with ~2500 kg (5500 lb) of cargo.

Along for the ride are NASA’s Orbiting Carbon Observatory-3 (OCO-3) and the multi-experiment STP-H6 investigation, two large pieces of hardware that will be delivered to the ISS in Dragon’s unpressurized trunk. After being berthed to the ISS, astronauts will unpack dozens of packages stored inside Cargo Dragon’s cabin. Sometime later, the station’s Canadarm2 will be used to grab OCO-3 and STP-H6 and install each on the outside of the space station, where they will hopefully live long and scientifically fruitful lives.

SpaceX and NASA have assigned a new Falcon 9 Block 5 booster – likely B1056 – to launch CRS-17. To preserve the scene of Crew Dragon C201’s April 20th explosion, the booster will attempt to land around 20 miles (32 km) offshore aboard drone ship Of Course I Still Love You (OCISLY). Originally scheduled for April 25th, CRS-17 was delayed to the 26th, 30th, 1st, and now May 3rd, most of which were requested by NASA for ISS scheduling purposes.

The latest delay – from May 1st to no earlier than (NET) May 3rd – was triggered by an unexpected electrical fault aboard the ISS, cutting the redundancy of its Canadarm2 (SSRMS) control systems from two strings to one. In other words, Canadarm2 – used to ‘grapple’ and berth spacecraft like Cargo Dragon and Cygnus to the station – is now just one electrical fault away from being rendered inoperable. CRS-17 will stay grounded until two-string (i.e. single fault) redundancy is returned to Canadarm2 and additional impacted systems.

In the event that ISS astronauts and NASA ground control are able to repair the electrical systems in a timely fashion, CRS-17 is scheduled to launch at 3:11 am EDT (07:11 UTC) on May 3rd.

The International Space Station was captured in October 2018 during a Soyuz fly-around. (NASA/Roscosmos)

In the shadow of Crew Dragon

A recent catastrophic failure of Crew Dragon (i.e. Dragon 2) raises serious questions about SpaceX’s follow-up CRS2 contract, but the nominal plan involves retiring Dragon 1 after CRS-20 and flying all future cargo missions with flight-proven Crew Dragon spacecraft. In the likely event that Crew Dragon C201’s failure delays SpaceX’s CRS2 schedule by several months, there are contingency plans to continue flying refurbished Dragon 1 spacecraft.

However, each Dragon 1 was designed for a maximum of three orbital missions, meaning that SpaceX’s current capsule fleet can support no more than six additional resupply missions before they reach the end of their usable lifespans. SpaceX thus has two potential buffer missions – CRS-21 and CRS-22 – that could theoretically account for up to a year of Dragon 2 delays. Beyond that, additional Dragon 2 delays could create a gap where NASA would have to supply the ISS without SpaceX’s services.

In a best-case scenario, SpaceX and NASA will quickly uncover an unequivocal culprit of C201’s catastrophic explosion, fix the technical and organizational failures that allowed it to happen, and be back on their feet in no time. In reality, it’s likely that the failure will delay future Crew Dragon (and thus Dragon 2) launches by a minimum of 6-12 months. SpaceX will likely need to change up the launch order of its capsules, reassigning DM-2’s Crew Dragon to the in-flight abort (IFA) test and the US Crew Vehicle 1 (USCV-1) Crew Dragon to SpaceX’s first crewed demonstration mission (DM-2). After such a serious and potentially fatal failure, it’s even possible that NASA will require an additional uncrewed orbital launch before permitting SpaceX to fly astronauts on Crew Dragon.

Given that SpaceX’s nominal CRS2 plan involved lightly modifying and reusing Dragon 2s after crewed missions, the future (and schedule) of the company’s Cargo and Crew contracts are intimately intertwined. With any luck, SpaceX and NASA will be able to solve the technical, organizational, and logistical problems now facing them and ensure a stable future for Dragon 2. In the meantime, Cargo Dragon’s CRS-17 mission offers SpaceX a chance to partially verify that Cargo Dragon C201’s issues are are relegated to Dragon 2 and Dragon 2 alone.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Cybertruck

Tesla begins Cybertruck deliveries in a new region for the first time

Published

on

Credit: @derek1ee | X

Tesla has initiated Cybertruck deliveries in a new region for the first time, as the all-electric pickup has officially made its way to the United Arab Emirates, marking the newest territory to receive the polarizing truck.

Tesla launched orders for the Cybertruck in the Middle East back in September 2025, just months after the company confirmed that it planned to launch the pickup in the region, which happened in April.

I took a Tesla Cybertruck weekend Demo Drive – Here’s what I learned

By early October, Tesla launched the Cybertruck configurator in the United Arab Emirates, Qatar, and Saudi Arabia, with pricing starting at around AED 404,900, or about $110,000 for the Dual Motor configuration.

This decision positioned the Gulf states as key early international markets, and Tesla was hoping to get the Cybertruck outside of North America for the first time, as it has still been tough to launch in other popular EV markets, like Europe and Asia.

By late 2025, Tesla had pushed delivery timelines slightly and aimed for an early 2026 delivery launch in the Middle East. The first official customer deliveries started this month, and a notable handover event occurred in Dubai’s Al Marmoom desert area, featuring a light and fire show.

Around 63 Cybertrucks made their way to customers during the event:

As of this month, the Cybertruck still remains available for configuration on Tesla’s websites for the UAE, Saudi Arabia, Qatar, and other Middle Eastern countries like Jordan and Israel. Deliveries are rolling out progressively, with the UAE leading as the first to see hands-on customer events.

In other markets, most notably Europe, there are still plenty of regulatory hurdles that Tesla is hoping to work through, but they may never be resolved. The issues come from the unique design features that conflict with the European Union’s (EU) stringent safety standards.

These standards include pedestrian protection regulations, which require vehicles to minimize injury risks in collisions. However, the Cybertruck features sharp edges and an ultra-hard stainless steel exoskeleton, and its rigid structure is seen as non-compliant with the EU’s list of preferred designs.

The vehicle’s gross weight is also above the 3.5-tonne threshold for standard vehicles, which has prompted Tesla to consider a more compact design. However, the company’s focus on autonomy and Robotaxi has likely pushed that out of the realm of possibility.

For now, Tesla will work with the governments that want it to succeed in their region, and the Middle East has been a great partner to the company with the launch of the Cybertruck.

Continue Reading

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading