News
SpaceX readies for astronaut capsule recovery backup plan as rocket drone ship deploys to landing zone
Mission objectives of the SpaceX Crew Dragon Demo-2 test flight, have already commenced days ahead of the scheduled launch attempt. On Wednesday, May 27th at 4:33 pm EDT, Elon Musk’s rocket launching – and landing – company, SpaceX, will set out to achieve more firsts than it has ever attempted in one launch. The final Crew Dragon test flight will shuttle NASA astronauts Bob Behnken and Doug Hurley to the International Space Station for the very first time. Along with the primary mission objective to deliver the astronauts safely, many secondary objectives are built into the mission profile. One of which is autonomously turning the Falcon 9 booster around shortly after launch to land on a floating barge in the middle of the Atlantic Ocean.
During the late hours of Saturday, May 23rd, a trusted veteran member of the SpaceX fleet of recovery vessels, Tug Hawk, returned to Port Canaveral to transport SpaceX’s autonomous spaceport drone ship, Of Course I Still Love You (OCISLY) to the designated booster recovery zone some 510km downrange. It seems that Tug Hawk and its crew returned specifically to assist with the recovery efforts of SpaceX’s highest-profile launch to date as there was already another tug at Port Canaveral available to assist that was not used. The arrival was captured by long-time port activity documenter, Julia Bergeron, and reported by the unofficial Twitter SpaceX recovery vessel tracking account, SpaceXFleet.
The SpaceX recovery fleet portion of the Demo-2 mission got underway on the morning of Sunday (May 24th). Space Coast local Greg Scott was at Port Canaveral to capture Tug Hawk’s departure with OCISLY in tow just twelve hours after arriving. About an hour later, the OCISLY support vessel that carries cargo and crew essential for booster recovery efforts, GO Quest, departed. It will take Tug Hawk and OCISLY approximately two days to travel to the recovery zone, arriving about 24 hours before the launch attempt.
The propulsive landing of a booster at sea is not a new concept for SpaceX. However, it is a practice that can be somewhat tricky to get right every time due to a multitude of factors. Recently, SpaceX suffered the loss of the Falcon 9 boosters B1056 and B1048 following recent Starlink satellite launches. Both boosters suffered unrelated issues with high winds and software glitches resulting in failed attempts to stick the landing on OCISLY. However, SpaceX successfully demonstrated the reliability of the Falcon 9 landing capability with the flawless launch and landing of the April 22nd Starlink Falcon 9 B1051 booster.

A special circumstance of the Demo-2 mission is the added recovery requirements of the Crew Dragon capsule. With Crew Dragon launching from LC-39A at the Kennedy Space Center in Florida and splashdown designated for the Atlantic Ocean, various recovery zones span almost the entire length of the United States’ eastern seaboard and across the Atlantic Ocean to Ireland. Special recovery zones also are located throughout the Gulf of Mexico.
Typically, the recovery of a crew capsule would only be thought to occur upon mission end when it is on approach for splashdown after re-entry. However, the specially equipped SpaceX Crew Dragon recovery vessels, GO Searcher and GO Navigator, are required to be able to respond to a number of locations during launch and through the entire duration of Crew Dragon’s time on orbit chasing down the International Space Station prior to docking – for Demo-2 that will be nineteen hours. This is to ensure that in the unlikely event of Crew Dragon experiencing an emergency pad or launch abort scenario, the crew aboard can be safely rescued.
To this end, GO Searcher departed Port Canaveral days ago destined for the Naval Air Station in Pensacola on Florida’s west coast. GO Navigator will remain at Port Canaveral until Crew Dragon returns for a splashdown following the conclusion of Demo-2. Dual Dragon recovery vessels stationed on either side of Florida ensures that Hurley and Behnken can be rescued should they require emergency recovery.
Should Demo-2 pass SpaceX’s upcoming final Launch Readiness Review scheduled for Monday, May 25th, all will proceed toward the launch attempt on Wednesday, May 27th at 4:33 pm EDT.
Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
