Connect with us

News

SpaceX begins huge dirt pile removal to pave way for BFR spaceship hop tests

Published

on

After more than two years of silence, SpaceX has taken the first major tangible steps towards the construction of a dedicated South Texas rocket testing facility.

In anticipation of a full-scale BFR spaceship (BFS) hop test campaign that could begin as early as late 2019, local contractors and a smattering of SpaceX employees have begun to earnestly break down and repurpose a large quantity of dirt – known as a surcharge pile – to allow the construction of real facilities to begin.

Documented as of late by a handful of interested local observers and another subset of less local but equally interested followers, SpaceX’s prospective South Texas test and launch facilities have experienced a near-unprecedented burst of activity over the last two months, most notably including the arrival of a small fleet of heavy machinery and construction contractors at a site SpaceX has been working on for three years.

After ~36 months of dead silence, this activity correlates well with recent comments from SpaceX executives Elon Musk and Gwynne Shotwell indicating that the company is still targeting inaugural BFR spaceship hop tests sometime near the end of 2019.

The infrastructure needed for those early tests could be quite sparse depending on the status of the BFR hardware to be ‘hopped’ – Falcon 9’s Grasshopper and F9R test campaigns, for example, operated off of a tiny concrete pad with extremely minimalist ground support equipment (GSE). Photos from a number of videos SpaceX posted during those crafts’ 2012-2014 series of hop tests demonstrate this minimum well, although chances are good that the company will build up Boca Chica a bit beyond the test pad used for Falcon 9 booster recovery R&D.

 

SpaceX’s Grasshopper and F9R hop tests took place exclusively at the company’s well-established McGregor, Texas testing facilities, offering a range of large hangars, three operational Merlin 1D and Vacuum test bays, and dedicated stands for integrated first and second stage static-fire tests, among countless other rocketry-related amenities. The secluded South Texas coastal region where SpaceX wants to test – if not launch – integrated BFRs has none of McGregor’s preexisting infrastructure, however – anything SpaceX needs will have to be built from scratch on-site.

Advertisement

Thus far, almost no real structures have been constructed, aside from a small-ish sheet metal shed that was literally built around a huge crane that arrived on SpaceX property a few months prior. Over the last two or so years, all activity at the South Texas site clustered specifically around a plot where two large radio dishes – and eventually cryogenic storage tanks – were delivered, installed, and/or stored. However, the actual site of the pad SpaceX originally planned to launch Falcon 9 and Heavy from is a mile or two East of that highly visible development, the same location where a flurry of activity has begun in the last month.

 

In 2015, SpaceX trucked in several hundred thousand tons of dirt to be packed on top of the site where the company eventually planned to build a large Falcon integration hangar and then left for several years to crush the softer marshlands beneath it into firm submission. That time appears to be up, as the work now ongoing at that site is focused on removing that surcharging dirt now that the soil beneath it is stable enough to host heavy, long-term structures like a rocket launch pad.

Most of that massive dirt pile will likely remain at SpaceX’s South Texas property, to be used as a basic construction material as the company begins to build some semblance of the facility described in its approved 2014 environmental impact assessment. As it takes shape, it will become clear just how closely SpaceX is sticking to those original plans. BFR hop tests could begin by late 2019 if prototype spaceship construction – already in work at a tent in Port of Los Angeles – proceeds smoothly.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading