News
SpaceX begins huge dirt pile removal to pave way for BFR spaceship hop tests
After more than two years of silence, SpaceX has taken the first major tangible steps towards the construction of a dedicated South Texas rocket testing facility.
In anticipation of a full-scale BFR spaceship (BFS) hop test campaign that could begin as early as late 2019, local contractors and a smattering of SpaceX employees have begun to earnestly break down and repurpose a large quantity of dirt – known as a surcharge pile – to allow the construction of real facilities to begin.
Documented as of late by a handful of interested local observers and another subset of less local but equally interested followers, SpaceX’s prospective South Texas test and launch facilities have experienced a near-unprecedented burst of activity over the last two months, most notably including the arrival of a small fleet of heavy machinery and construction contractors at a site SpaceX has been working on for three years.
After ~36 months of dead silence, this activity correlates well with recent comments from SpaceX executives Elon Musk and Gwynne Shotwell indicating that the company is still targeting inaugural BFR spaceship hop tests sometime near the end of 2019.
Shotwell: think we’ll be “hopping” the second stage of BFR (the BFS) late next year. #DARPA60
— Jeff Foust (@jeff_foust) September 6, 2018
The infrastructure needed for those early tests could be quite sparse depending on the status of the BFR hardware to be ‘hopped’ – Falcon 9’s Grasshopper and F9R test campaigns, for example, operated off of a tiny concrete pad with extremely minimalist ground support equipment (GSE). Photos from a number of videos SpaceX posted during those crafts’ 2012-2014 series of hop tests demonstrate this minimum well, although chances are good that the company will build up Boca Chica a bit beyond the test pad used for Falcon 9 booster recovery R&D.
- F9R seen just before liftoff for a 2014 hop test at SpaceX’s McGregor, TX test facilities. (SpaceX)
- Just the bare necessities. (SpaceX)
SpaceX’s Grasshopper and F9R hop tests took place exclusively at the company’s well-established McGregor, Texas testing facilities, offering a range of large hangars, three operational Merlin 1D and Vacuum test bays, and dedicated stands for integrated first and second stage static-fire tests, among countless other rocketry-related amenities. The secluded South Texas coastal region where SpaceX wants to test – if not launch – integrated BFRs has none of McGregor’s preexisting infrastructure, however – anything SpaceX needs will have to be built from scratch on-site.
There is activity. pic.twitter.com/A8JYw6vdW6
— Nehkara (@Nehkara) October 13, 2018
Thus far, almost no real structures have been constructed, aside from a small-ish sheet metal shed that was literally built around a huge crane that arrived on SpaceX property a few months prior. Over the last two or so years, all activity at the South Texas site clustered specifically around a plot where two large radio dishes – and eventually cryogenic storage tanks – were delivered, installed, and/or stored. However, the actual site of the pad SpaceX originally planned to launch Falcon 9 and Heavy from is a mile or two East of that highly visible development, the same location where a flurry of activity has begun in the last month.
- A map showing several locations SpaceX planned (as of 2014) to develop.
- SpaceX’s proposed launch site (right) and the currently location of radar dishes, a large crane, and several propellant tanks. (Google)
In 2015, SpaceX trucked in several hundred thousand tons of dirt to be packed on top of the site where the company eventually planned to build a large Falcon integration hangar and then left for several years to crush the softer marshlands beneath it into firm submission. That time appears to be up, as the work now ongoing at that site is focused on removing that surcharging dirt now that the soil beneath it is stable enough to host heavy, long-term structures like a rocket launch pad.
Most of that massive dirt pile will likely remain at SpaceX’s South Texas property, to be used as a basic construction material as the company begins to build some semblance of the facility described in its approved 2014 environmental impact assessment. As it takes shape, it will become clear just how closely SpaceX is sticking to those original plans. BFR hop tests could begin by late 2019 if prototype spaceship construction – already in work at a tent in Port of Los Angeles – proceeds smoothly.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.



