Connect with us

News

SpaceX Dragon XL could double as a crew cabin for lunar space station

Published

on

A recent modification to SpaceX’s Dragon XL lunar cargo resupply contract with NASA suggests that the spacecraft could be used as an extra crew cabin and bathroom at a lunar space station known as Gateway.

The contract modification was made around April 1st of this year and provided SpaceX around $121,000 to complete the latest study on the potential utility of its expendable Dragon XL spacecraft beyond the primary goal of resupplying a space station orbiting the Moon. Designed to deliver at least five metric tons (~11,000 lb) of pressurized and unpressurized cargo to Gateway, Dragon XL will launch on SpaceX’s own Falcon Heavy rocket – currently the only super heavy-lift launch vehicle in operation – and meant to heavily borrow from hardware and systems already developed for Crew and Cargo Dragon.

NASA first announced its selection of SpaceX for the Gateway Logistics Services (GLS) contract back in March 2020. More than a year later, very little has been said (or visibly done) to progress from that announcement to a true contract – an unusually long period of inactivity for such a significant program.

Of note, as recently as April 2021, NASA officials made it clear that they were still in the cryptic process of “reviewing” the Artemis program, leading to such a long delay between the GLS award announcement and finalization of an actual contract with SpaceX. Of note, back when it was announced, NASA’s nominal plan was to begin Dragon XL cargo deliveries as early as 2024 to support the Artemis Program’s first crewed Moon landing attempt.

Since then, however, other crucial aspects – namely the concept of operations and Human Lander System (HLS) meant to carry astronauts to and from the Moon – have evolved significantly. Weeks after NASA’s GLS announcement, the space agency awarded approximately $1 billion to three prospective HLS providers – SpaceX, Dynetics, and a team led by Blue Origin. A little over a year later, NASA announced a shocking decision to award that initial HLS Moon landing demonstration contract to SpaceX and SpaceX alone.

More or less simultaneously, NASA it made it clear that it was seriously studying the possibility of performing Artemis-3 – the first crewed Moon landing attempt in half a century – without Gateway. Along those lines, the SLS-launched Orion spacecraft and HLS lander (a custom variant of SpaceX’s Starship) would dock directly in lunar orbit instead of separately docking to Gateway to transfer crew. NASA’s decision to solely select Starship as its future Moon lander was so surprising in large part because of how starkly the vehicle’s potential capabilities contrast with the rest of the Artemis Program.

As many have already noted, the very existence of a Starship with capabilities close to what SpaceX is working towards – now a practical inevitability for the company to complete its HLS contract – brings into question the architecture NASA has proposed for Artemis. Currently, the nominal plan is to launch astronauts into an exotic high lunar orbit with NASA’s own SLS rocket and Orion spacecraft – an inconvenient orbit only needed to make up for said spacecraft’s shortcomings. Prior to recent developments, Orion would then dock with Gateway. The HLS vehicle would follow and crew would eventually transfer to the lander, which would then carry 2+ astronauts to and from the surface of the Moon and re-dock with Gateway, followed by Orion returning those astronauts to Earth.

Advertisement
-->

Given that Starship offers enough pressurized volume to rival even the vast International Space Station (ISS) in a single launch, the entire concept of Gateway – an almost inhumanely tiny space station – becomes dubious. If Orion also doesn’t need Gateway to transfer its astronauts to the lander, which NASA has all but confirmed, it’s difficult to see what value Gateway could offer outside of a very expensive technology demonstration. Including a planned Falcon Heavy launch of the first two Gateway segments, station production, and the possible need for expensive Dragon XL cargo deliveries, Gateway could easily end up costing NASA $4-5 billion before it hosts a single astronaut.

NASA is already deeply concerned about the apparent likelihood of Congress systematically underfunding the HLS and Artemis programs outside of SLS and Orion, going as far as selecting just a single HLS provider after clearly indicating a desire for redundancy given enough funding. NASA’s HLS contract with SpaceX is expected to cost around $2.9 billion. The next cheapest option – Blue Origin’s proposal – would reportedly cost around $6 billion. In other words, if NASA were able to stop work and Gateway and redirect that funding elsewhere, it could almost already afford two HLS providers without a larger budget.

Given that NASA has selected SpaceX for HLS and GLS, it’s not impossible to imagine that the space agency is growing increasingly aware that Gateway and Dragon XL look more than a little redundant beside the Starship vehicle NASA itself is now funding SpaceX to realize. For now, though, work on all three programs continue. Most recently, NASA and SpaceX are studying the possibility of adding a toilet and using Dragon XL as an extra crew cabin and bathroom to augment the tiny habitable volume of Gateway’s lone habitat. Only time will tell where the cards ultimately fall.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is not sparing any expense in ensuring the Cybercab is safe

Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.

Published

on

Credit: @JoeTegtmeyer/X

The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility. 

Intensive crash tests

As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays. 

Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads. 

Prioritizing safety

With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.

Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.

Advertisement
-->
Continue Reading

Elon Musk

Tesla’s Elon Musk gives timeframe for FSD’s release in UAE

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Published

on

Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026. 

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Musk’s estimate

In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry. 

“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.

Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.

Advertisement
-->

FSD recognition

FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.

Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.

Continue Reading

News

Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco

“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.

Published

on

Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage. 

While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.

Tesla FSD handles total darkness

The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.

Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post. 

Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.  

Advertisement
-->

Waymo’s blackout struggles

Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out. 

In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”

A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading