Connect with us

News

SpaceX Dragon XL could double as a crew cabin for lunar space station

Published

on

A recent modification to SpaceX’s Dragon XL lunar cargo resupply contract with NASA suggests that the spacecraft could be used as an extra crew cabin and bathroom at a lunar space station known as Gateway.

The contract modification was made around April 1st of this year and provided SpaceX around $121,000 to complete the latest study on the potential utility of its expendable Dragon XL spacecraft beyond the primary goal of resupplying a space station orbiting the Moon. Designed to deliver at least five metric tons (~11,000 lb) of pressurized and unpressurized cargo to Gateway, Dragon XL will launch on SpaceX’s own Falcon Heavy rocket – currently the only super heavy-lift launch vehicle in operation – and meant to heavily borrow from hardware and systems already developed for Crew and Cargo Dragon.

NASA first announced its selection of SpaceX for the Gateway Logistics Services (GLS) contract back in March 2020. More than a year later, very little has been said (or visibly done) to progress from that announcement to a true contract – an unusually long period of inactivity for such a significant program.

Of note, as recently as April 2021, NASA officials made it clear that they were still in the cryptic process of “reviewing” the Artemis program, leading to such a long delay between the GLS award announcement and finalization of an actual contract with SpaceX. Of note, back when it was announced, NASA’s nominal plan was to begin Dragon XL cargo deliveries as early as 2024 to support the Artemis Program’s first crewed Moon landing attempt.

Since then, however, other crucial aspects – namely the concept of operations and Human Lander System (HLS) meant to carry astronauts to and from the Moon – have evolved significantly. Weeks after NASA’s GLS announcement, the space agency awarded approximately $1 billion to three prospective HLS providers – SpaceX, Dynetics, and a team led by Blue Origin. A little over a year later, NASA announced a shocking decision to award that initial HLS Moon landing demonstration contract to SpaceX and SpaceX alone.

Advertisement

More or less simultaneously, NASA it made it clear that it was seriously studying the possibility of performing Artemis-3 – the first crewed Moon landing attempt in half a century – without Gateway. Along those lines, the SLS-launched Orion spacecraft and HLS lander (a custom variant of SpaceX’s Starship) would dock directly in lunar orbit instead of separately docking to Gateway to transfer crew. NASA’s decision to solely select Starship as its future Moon lander was so surprising in large part because of how starkly the vehicle’s potential capabilities contrast with the rest of the Artemis Program.

As many have already noted, the very existence of a Starship with capabilities close to what SpaceX is working towards – now a practical inevitability for the company to complete its HLS contract – brings into question the architecture NASA has proposed for Artemis. Currently, the nominal plan is to launch astronauts into an exotic high lunar orbit with NASA’s own SLS rocket and Orion spacecraft – an inconvenient orbit only needed to make up for said spacecraft’s shortcomings. Prior to recent developments, Orion would then dock with Gateway. The HLS vehicle would follow and crew would eventually transfer to the lander, which would then carry 2+ astronauts to and from the surface of the Moon and re-dock with Gateway, followed by Orion returning those astronauts to Earth.

Given that Starship offers enough pressurized volume to rival even the vast International Space Station (ISS) in a single launch, the entire concept of Gateway – an almost inhumanely tiny space station – becomes dubious. If Orion also doesn’t need Gateway to transfer its astronauts to the lander, which NASA has all but confirmed, it’s difficult to see what value Gateway could offer outside of a very expensive technology demonstration. Including a planned Falcon Heavy launch of the first two Gateway segments, station production, and the possible need for expensive Dragon XL cargo deliveries, Gateway could easily end up costing NASA $4-5 billion before it hosts a single astronaut.

NASA is already deeply concerned about the apparent likelihood of Congress systematically underfunding the HLS and Artemis programs outside of SLS and Orion, going as far as selecting just a single HLS provider after clearly indicating a desire for redundancy given enough funding. NASA’s HLS contract with SpaceX is expected to cost around $2.9 billion. The next cheapest option – Blue Origin’s proposal – would reportedly cost around $6 billion. In other words, if NASA were able to stop work and Gateway and redirect that funding elsewhere, it could almost already afford two HLS providers without a larger budget.

Given that NASA has selected SpaceX for HLS and GLS, it’s not impossible to imagine that the space agency is growing increasingly aware that Gateway and Dragon XL look more than a little redundant beside the Starship vehicle NASA itself is now funding SpaceX to realize. For now, though, work on all three programs continue. Most recently, NASA and SpaceX are studying the possibility of adding a toilet and using Dragon XL as an extra crew cabin and bathroom to augment the tiny habitable volume of Gateway’s lone habitat. Only time will tell where the cards ultimately fall.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading