Connect with us

News

SpaceX CEO Elon Musk hints at Starlink’s global reach at Tesla shareholder event

An animation of SpaceX's Starlink satellite constellation. (SpaceX - GIF by Teslarati)

Published

on

Speaking at Tesla’s annual shareholder meeting, CEO Elon Musk – also CEO of SpaceX – briefly segued to his spaceflight company’s ambitious Starlink program and discussed how he believes the satellite constellation can support no more than 3-5% of the global population.

On May 23rd, SpaceX successfully launched 60 “v0.9” Starlink satellites – weighing as much as 18.5 tons (~41,000 lb) – into LEO, a first step unmatched in ambition in the history of commercial satellites. Delivered to an orbit of ~450 km (280 mi), all but four of the 60 spacecraft have managed to successfully power up their electric ion thrusters and 55 have already raised their orbits to ~500 km (310 mi). For what is effectively a technology/partial-prototype demonstration mission, the record of Starlink v0.9 performance is extremely impressive and bodes well for a quick and relatively easy design optimization (to “v1.0”) before true mass production can begin.

In general, Musk was more than willing to acknowledge some of the potential limitations of a Low Earth Orbit (LEO) broadband satellite constellation at Tesla’s 2019 shareholder meeting. Most notably, he bluntly noted that Starlink is not designed to service densely populated areas and will predominately be focused on low to medium-density populaces. Triggered by an investor’s question about the possibility of integrating Starlink into future Tesla cars, Musk reiterated that SpaceX’s first-generation Starlink user terminals (i.e. ground antennas) will be roughly the size of a “medium pizza”.

Although pizza sizing is not exactly ISO-certified, Starlink’s user antennas will presumably be around 12-14 inches (30-36 cm) wide and come in a square form factor. Thanks to the use of what Musk believes are the most advanced phased array antennas in the world, neither the antennas on Starlink satellites or user terminals will need to physically move to maintain a strong signal. Still, as Musk notes, an antenna the size of medium pizza box would still stick out like a sore thumb on the typically all-glass roof of an of Tesla’s consumer cars, although built-in Starlink antennas might actually make sense on Tesla Semis.

Elon Musk’s specific comment indicated that Starlink – at least in its current iteration – was never meant to serve more than “3-5%” of Earth (population: ~7.8 billion), with most or all of its users nominally located in areas with low to medium population densities. This generally confirms technical suspicions that Starlink (and other constellations like OneWeb and Telesat) is not really capable of providing internet to everyone per se.

For SpaceX, each Starlink satellite – per official statements that the first 60 satellites represent more than 1 terabit of bandwidth – likely offers bandwidth of roughly 17-20 gigabits per second. In simpler terms, this means that one Starlink satellite overhead could theoretically support as many as 4000 users simultaneously streaming YouTube videos at 1080p/30fps, a figure that sounds impressive but glosses over the sheer number of people that live in cities. Importantly, every single Starlink satellite at ~550 km will likely have a service radius of several thousand – if not tens of thousands of – square kilometers.

Although each satellite is just a few square meters, they may be able to serve internet to thousands of people simultaneously. (SpaceX)

Even though the US is exceptionally large and spread out relative to most other countries, a single square kilometer of New York City, Los Angeles, San Francisco, Boston, Miami, Seattle, or dozens of other cities could effortlessly saturate a Starlink satellite’s bandwidth. Even the smallest of towns and cities could easily use most or all of ~20 Gbps at peak hours. In short, Starlink is going to be extremely bandwidth-constrained. Even if SpaceX can double or triple each satellite’s bandwidth and have 10-100 satellites overhead and capable of delivering internet at any given moment, it’s hard to imagine that Starlink will ever be able to serve every person that falls under its coverage area.

Additionally, this means that there is a strong chance that Starlink internet customers will be subject to relatively strict bandwidth limitations and throttling at peak hours. Thankfully, these limitations will be made entirely out of technical necessity, standing in stark contrast to the arbitrary, greed-motivated carriers and ISPs Americans are almost universally accustomed to. In an absolute worst-case scenario, Starlink’s already-connected US customers would get roughly the same quality of service they are used to at roughly the same price. However, they would be able to rest assured that their money was going to SpaceX instead of filling the pockets of the robber-baron-esque shareholders and executives that run American ISPs.

A stack of SpaceX’s first 60 Starlink satellites. (SpaceX)

Ultimately, the estimates provided above are exceptionally conservative and generally assume worst-case scenarios. SpaceX could very well beat expectations and develop unique and innovative ways of efficiently using its available bandwidth, while also tirelessly working to improve its technology and expand the carrying capacity of newer satellites. In general, CEO Elon Musk’s comments serve as an excellent temper to the hype surrounding Starlink. SpaceX isn’t going to initially be breaking the backs of Comcast or Time Warner but there’s no reason to believe that that day will never come.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla seen as early winner as Canada reopens door to China-made EVs

Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y.

Published

on

Credit: Tesla

Tesla seems poised to be an early beneficiary of Canada’s decision to reopen imports of Chinese-made electric vehicles, following the removal of a 100% tariff that halted shipments last year.

Thanks to Giga Shanghai’s capability to produce Canadian-spec vehicles, it might only be a matter of time before Tesla is able to export vehicles to Canada from China once more. 

Under the new U.S.–Canada trade agreement, Canada will allow up to 49,000 vehicles per year to be imported from China at a 6.1% tariff, with the quota potentially rising to 70,000 units within five years, according to Prime Minister Mark Carney. 

Half of the initial quota is reserved for vehicles priced under CAD 35,000, a threshold above current Tesla models, though the electric vehicle maker could still benefit from the rule change, as noted in a Reuters report.

Advertisement
-->

Tesla had already prepared for Chinese exports to Canada in 2023 by equipping its Shanghai Gigafactory to produce a Canada-specific version of the Model Y. That year, Tesla began shipping vehicles from Shanghai to Canada, contributing to a sharp 460% year-over-year increase in China-built vehicle imports through Vancouver. 

When Ottawa imposed a 100% tariff in 2024, however, Tesla halted those shipments and shifted Canadian supply to its U.S. and Berlin factories. With tariffs now reduced, Tesla could quickly resume China-to-Canada exports.

Beyond manufacturing flexibility, Tesla could also benefit from its established retail presence in Canada. The automaker operates 39 stores across Canada, while Chinese brands like BYD and Nio have yet to enter the Canadian market directly. Tesla’s relatively small lineup, which is comprised of four core models plus the Cybertruck, allows it to move faster on marketing and logistics than competitors with broader portfolios.

Advertisement
-->
Continue Reading

Elon Musk

Tesla confirms that work on Dojo 3 has officially resumed

“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo 3,” Elon Musk wrote in a post on X.

Published

on

(Credit: Tesla)

Tesla has restarted work on its Dojo 3 initiative, its in-house AI training supercomputer, now that its AI5 chip design has reached a stable stage. 

Tesla CEO Elon Musk confirmed the update in a recent post on X.

Tesla’s Dojo 3 initiative restarted

In a post on X, Musk said that with the AI5 chip design now “in good shape,” Tesla will resume work on Dojo 3. He added that Tesla is hiring engineers interested in working on what he expects will become the highest-volume AI chips in the world.

“Now that the AI5 chip design is in good shape, Tesla will restart work on Dojo3. If you’re interested in working on what will be the highest volume chips in the world, send a note to AI_Chips@Tesla.com with 3 bullet points on the toughest technical problems you’ve solved,” Musk wrote in his post on X. 

Musk’s comment followed a series of recent posts outlining Tesla’s broader AI chip roadmap. In another update, he stated that Tesla’s AI4 chip alone would achieve self-driving safety levels well above human drivers, AI5 would make vehicles “almost perfect” while significantly enhancing Optimus, and AI6 would be focused on Optimus and data center applications. 

Advertisement
-->

Musk then highlighted that AI7/Dojo 3 will be designed to support space-based AI compute.

Tesla’s AI roadmap

Musk’s latest comments helped resolve some confusion that emerged last year about Project Dojo’s future. At the time, Musk stated on X that Tesla was stepping back from Dojo because it did not make sense to split resources across multiple AI chip architectures. 

He suggested that clustering large numbers of Tesla AI5 and AI6 chips for training could effectively serve the same purpose as a dedicated Dojo successor. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk wrote at the time.

Musk later reinforced that idea by responding positively to an X post stating that Tesla’s AI6 chip would effectively be the new Dojo. Considering his recent updates on X, however, it appears that Tesla will be using AI7, not AI6, as its dedicated Dojo successor. The CEO did state that Tesla’s AI7, AI8, and AI9 chips will be developed in short, nine-month cycles, so Dojo’s deployment might actually be sooner than expected. 

Advertisement
-->
Continue Reading

Elon Musk

Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online

Elon Musk shared his update in a recent post on social media platform X.

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.

Elon Musk shared his update in a recent post on social media platform X.

Colossus 2 goes live

The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world. 

But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.  

Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.

Advertisement
-->

Funding fuels rapid expansion

xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.

The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.

xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.

Continue Reading