News
SpaceX CEO Elon Musk hints at Starlink’s global reach at Tesla shareholder event
Speaking at Tesla’s annual shareholder meeting, CEO Elon Musk – also CEO of SpaceX – briefly segued to his spaceflight company’s ambitious Starlink program and discussed how he believes the satellite constellation can support no more than 3-5% of the global population.
On May 23rd, SpaceX successfully launched 60 “v0.9” Starlink satellites – weighing as much as 18.5 tons (~41,000 lb) – into LEO, a first step unmatched in ambition in the history of commercial satellites. Delivered to an orbit of ~450 km (280 mi), all but four of the 60 spacecraft have managed to successfully power up their electric ion thrusters and 55 have already raised their orbits to ~500 km (310 mi). For what is effectively a technology/partial-prototype demonstration mission, the record of Starlink v0.9 performance is extremely impressive and bodes well for a quick and relatively easy design optimization (to “v1.0”) before true mass production can begin.
In general, Musk was more than willing to acknowledge some of the potential limitations of a Low Earth Orbit (LEO) broadband satellite constellation at Tesla’s 2019 shareholder meeting. Most notably, he bluntly noted that Starlink is not designed to service densely populated areas and will predominately be focused on low to medium-density populaces. Triggered by an investor’s question about the possibility of integrating Starlink into future Tesla cars, Musk reiterated that SpaceX’s first-generation Starlink user terminals (i.e. ground antennas) will be roughly the size of a “medium pizza”.
Although pizza sizing is not exactly ISO-certified, Starlink’s user antennas will presumably be around 12-14 inches (30-36 cm) wide and come in a square form factor. Thanks to the use of what Musk believes are the most advanced phased array antennas in the world, neither the antennas on Starlink satellites or user terminals will need to physically move to maintain a strong signal. Still, as Musk notes, an antenna the size of medium pizza box would still stick out like a sore thumb on the typically all-glass roof of an of Tesla’s consumer cars, although built-in Starlink antennas might actually make sense on Tesla Semis.
Elon Musk’s specific comment indicated that Starlink – at least in its current iteration – was never meant to serve more than “3-5%” of Earth (population: ~7.8 billion), with most or all of its users nominally located in areas with low to medium population densities. This generally confirms technical suspicions that Starlink (and other constellations like OneWeb and Telesat) is not really capable of providing internet to everyone per se.
For SpaceX, each Starlink satellite – per official statements that the first 60 satellites represent more than 1 terabit of bandwidth – likely offers bandwidth of roughly 17-20 gigabits per second. In simpler terms, this means that one Starlink satellite overhead could theoretically support as many as 4000 users simultaneously streaming YouTube videos at 1080p/30fps, a figure that sounds impressive but glosses over the sheer number of people that live in cities. Importantly, every single Starlink satellite at ~550 km will likely have a service radius of several thousand – if not tens of thousands of – square kilometers.

Even though the US is exceptionally large and spread out relative to most other countries, a single square kilometer of New York City, Los Angeles, San Francisco, Boston, Miami, Seattle, or dozens of other cities could effortlessly saturate a Starlink satellite’s bandwidth. Even the smallest of towns and cities could easily use most or all of ~20 Gbps at peak hours. In short, Starlink is going to be extremely bandwidth-constrained. Even if SpaceX can double or triple each satellite’s bandwidth and have 10-100 satellites overhead and capable of delivering internet at any given moment, it’s hard to imagine that Starlink will ever be able to serve every person that falls under its coverage area.
Additionally, this means that there is a strong chance that Starlink internet customers will be subject to relatively strict bandwidth limitations and throttling at peak hours. Thankfully, these limitations will be made entirely out of technical necessity, standing in stark contrast to the arbitrary, greed-motivated carriers and ISPs Americans are almost universally accustomed to. In an absolute worst-case scenario, Starlink’s already-connected US customers would get roughly the same quality of service they are used to at roughly the same price. However, they would be able to rest assured that their money was going to SpaceX instead of filling the pockets of the robber-baron-esque shareholders and executives that run American ISPs.

Ultimately, the estimates provided above are exceptionally conservative and generally assume worst-case scenarios. SpaceX could very well beat expectations and develop unique and innovative ways of efficiently using its available bandwidth, while also tirelessly working to improve its technology and expand the carrying capacity of newer satellites. In general, CEO Elon Musk’s comments serve as an excellent temper to the hype surrounding Starlink. SpaceX isn’t going to initially be breaking the backs of Comcast or Time Warner but there’s no reason to believe that that day will never come.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
SpaceX issues statement on Starship V3 Booster 18 anomaly
The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas.
SpaceX’s initial comment
As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.
“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X.
Incident and aftermath
Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.
Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.
Investor's Corner
Tesla analyst maintains $500 PT, says FSD drives better than humans now
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers.
The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.
Analysts highlight autonomy progress
During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.
The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report.
Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”
Street targets diverge on TSLA
While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.
Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements.
Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.