News
SpaceX test emergency egress drills ahead of upcoming crew mission
NASA and SpaceX are progressing full steam ahead to an epic launch of the crewed Dragon spacecraft. Known as Demo-2, the mission is estimated to blast off in mid-to-late May, marking the first-ever flight of the Dragon with astronauts on board.
As part of that historic mission, two NASA astronauts — Doug Hurley and Bob Behnken — will launch to the International Space Station, where they will spend a still to be determined amount of time. The mission, deemed critical by NASA, is progressing as planned despite the coronavirus outbreak that’s spreading across the country.

To that end, NASA and SpaceX personnel, along with the crew, practiced essential safety drills and launch day procedures at the space agency’s Kennedy Space Center in Florida. SpaceX’s Crew Dragon capsule, and its Falcon 9 launcher, are equipped with numerous safety features designed to protect astronauts in the event of an emergency. And NASA wants to make sure they work.
One system — known as a launch escape system — was recently tested in-flight, proving that if something is wrong with the Falcon, the crews can be whisked away to safety by Dragon. But what if something goes wrong on the launch pad? The launchpad is equipped with a zipline that can be used to whisk astronauts quickly back to the ground should an emergency happen.
On April 3, @NASA and @SpaceX conducted an emergency egress exercise at Launch Complex 39A at @NASAKennedy.
This demonstration was completed to ensure the crew & support teams can quickly evacuate from the launch pad in the unlikely event of an emergency: https://t.co/5xYN51WHGp pic.twitter.com/75LTRoyMKA
— NASA Commercial Crew (@Commercial_Crew) April 7, 2020
On Friday (April 3), SpaceX and NASA completed an important test of that system. Teams simulated an “emergency egress”, running through a series of steps designed to transport the astronauts off the pad, and ensure their safety in the event that a serious problem crops up prior to liftoff.
“Teams rehearsed locating injured personnel on the 265-foot-level of the launch tower, loading them into the pad’s slidewire baskets and safely descending the tower, then successfully loading the injured participants into Mine Resistant Ambush Protected (MRAP) vehicles staged at the pad perimeter,” NASA officials wrote in an update.
This follows a series of simulations that the teams ran last month. They gathered in Firing Room 4, SpaceX HQ, and Johnson Space Center to run through launch simulations, ensuring the crew and launch control teams were ready for anything on the day of launch.
The flight is one for the history books as it marks the return of human spaceflight from U.S. soil since 2011. When the space shuttle program ended, NASA and other agencies around the world relied solely on Russia to ferry their astronauts to and from space. But that was only temporary as NASA turned to private companies to build its next generation of space taxis in 2014.

Ever since, the agency’s two contractors, SpaceX and Boeing, have worked to build its own version of an astronaut transport. Following a successful uncrewed test flight, SpaceX’s Crew Dragon capsule will be the first to launch astronauts for NASA. If this mission goes well, the California-based spaceflight company will be certified to launch astronauts on a regular basis.
NASA astronaut Shannon Walker has been assigned to the first operational crewed flight of @SpaceX's Crew Dragon, bound for the @space_station!
Pending a successful Demo-2 test, Walker, @Astro_illini, @VicGlover and @Astro_Soichi will launch this year. https://t.co/eYUN1Zt6Y0 pic.twitter.com/Fi4hCEZV3W
— NASA's Johnson Space Center (@NASA_Johnson) March 31, 2020
It’s first crew of four people — NASA astronauts Michael Hopkins, Victor Glover Jr., and Shannon Walker and Japanese astronaut Soichi Noguchi — are set to fly later this year or the beginning of 2021, if all goes as planned.
Boeing completed its uncrewed test flight in December of last year; however, its capsule experienced an inflight anomaly and was unable to reach the space station. Following an extensive review, Boeing has decided to repeat its uncrewed test flight before it launches people. That flight is expected for some time this fall.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
