Connect with us

News

SpaceX test emergency egress drills ahead of upcoming crew mission

Crews practice emergency escape procedures prior to SpaceX's upcoming crew mission. Credit: SpaceX

Published

on

NASA and SpaceX are progressing full steam ahead to an epic launch of the crewed Dragon spacecraft. Known as Demo-2, the mission is estimated to blast off in mid-to-late May, marking the first-ever flight of the Dragon with astronauts on board.

As part of that historic mission, two NASA astronauts — Doug Hurley and Bob Behnken — will launch to the International Space Station, where they will spend a still to be determined amount of time. The mission, deemed critical by NASA, is progressing as planned despite the coronavirus outbreak that’s spreading across the country. 

NASA astronauts Doug Hurley, foreground, and Bob Behnken don SpaceX spacesuits in the Astronaut Crew Quarters at Kennedy Space Center in Florida on January 17, 2020, during a dress rehearsal ahead of the company’s uncrewed In-Flight Abort Test. Credit: NASA

To that end, NASA and SpaceX personnel, along with the crew, practiced essential safety drills and launch day procedures at the space agency’s Kennedy Space Center in Florida. SpaceX’s Crew Dragon capsule, and its Falcon 9 launcher, are equipped with numerous safety features designed to protect astronauts in the event of an emergency. And NASA wants to make sure they work.

One system — known as a launch escape system — was recently tested in-flight, proving that if something is wrong with the Falcon, the crews can be whisked away to safety by Dragon. But what if something goes wrong on the launch pad? The launchpad is equipped with a zipline that can be used to whisk astronauts quickly back to the ground should an emergency happen. 

On Friday (April 3), SpaceX and NASA completed an important test of that system. Teams simulated an “emergency egress”,  running through a series of steps designed to transport the astronauts off the pad, and ensure their safety in the event that a serious problem crops up prior to liftoff.

“Teams rehearsed locating injured personnel on the 265-foot-level of the launch tower, loading them into the pad’s slidewire baskets and safely descending the tower, then successfully loading the injured participants into Mine Resistant Ambush Protected (MRAP) vehicles staged at the pad perimeter,” NASA officials wrote in an update.

This follows a series of simulations that the teams ran last month. They gathered in Firing Room 4, SpaceX HQ, and Johnson Space Center to run through launch simulations, ensuring the crew and launch control teams were ready for anything on the day of launch.

The flight is one for the history books as it marks the return of human spaceflight from U.S. soil since 2011. When the space shuttle program ended, NASA and other agencies around the world relied solely on Russia to ferry their astronauts to and from space. But that was only temporary as NASA turned to private companies to build its next generation of space taxis in 2014.

Advertisement
-->
NASA astronauts Bob Behnken and Doug Hurley participating in SpaceX’s flight simulator. Credit: NASA

Ever since, the agency’s two contractors, SpaceX and Boeing, have worked to build its own version of an astronaut transport. Following a successful uncrewed test flight, SpaceX’s Crew Dragon capsule will be the first to launch astronauts for NASA. If this mission goes well, the California-based spaceflight company will be certified to launch astronauts on a regular basis.

It’s first crew of four people — NASA astronauts Michael Hopkins, Victor Glover Jr., and Shannon Walker and Japanese astronaut Soichi Noguchi — are set to fly later this year or the beginning of 2021, if all goes as planned.

Boeing completed its uncrewed test flight in December of last year; however, its capsule experienced an inflight anomaly and was unable to reach the space station. Following an extensive review, Boeing has decided to repeat its uncrewed test flight before it launches people. That flight is expected for some time this fall.

Advertisement
-->

 

I write about space, science, and future tech.

Advertisement
Comments

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Investor's Corner

Tesla analyst maintains $500 PT, says FSD drives better than humans now

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Published

on

Credit: Tesla

Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers. 

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Analysts highlight autonomy progress

During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.

The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report. 

Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”

Advertisement
-->

Street targets diverge on TSLA

While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.

Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements. 

Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs. 

Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading