

SpaceX
SpaceX’s Falcon 9 Block 5 ready for first Return-To-Launch-Site booster landing
Falcon 9 B1048.2 is vertical at SpaceX’s Vandenberg Space Launch Complex 4 (SLC-4) facilities ahead of the rocket’s second launch, targeted at 07:21 PM PDT, Oct. 7 (02:21 UTC, Oct. 8). A bit less than ten minutes after liftoff, B1048 will attempt a Return-To-Launch-Site (RTLS) landing just ~1400 feet from the launch pad.
Meanwhile, Mr. Steven is ready to depart Port of San Pedro in support of Falcon fairing recovery operations soon after liftoff, the vessel’s fifth attempted catch in ~12 months of active service with SpaceX.
Falcon 9 B1048 and SAOCOM-1A as of 10:50 PM PDT. Photo courtesy of @_TomCross_ ?? pic.twitter.com/vlaB1fkk5p
— Eric Ralph (@13ericralph31) October 7, 2018
A few hours after the vessel’s four arms and net were fully installed (the first time in more than six weeks), SpaceX technicians performed a series of last-minute tests with a Falcon fairing half placed on his net to verify that its mechanised rigging was working as intended, while also double-checking data connectivity between the fairing and its target (the net). Pre-launch checkouts largely completed, Mr. Steven now has to travel a short 200 miles to reach the region where SpaceX expects Falcon 9’s fairings to be recovered.
- On September 4th, SpaceX performed a mechanical test of a fairing’s separation mechanism, in this case used to hold a (detachable) lifting harness. (Pauline Acalin)
- Note the taut, yellow ropes connected to the fairing at its original serparation connector ports. (Pauline Acalin)
- After an audible “3..2..1”, a sharp noise much like compressed gas being released was followed by a clang as the harness dropped. (Pauline Acalin)
Of Falcons and fairings
It may feel quite different watching in real time, but SpaceX has made a huge amount of progress towards successful and routine fairing recoveries over the course of the last year and a half. Before the company became truly famous (and popular), more than two years (2013-2015) and a dozen distinct attempts were spent patiently learning how to recover Falcon 9 boosters, ranging from the first launch of Falcon 9 V1.1 (CASSIOPE, late 2013) to multiple instances where boosters exploded in spectacular fashions on drone ships Just Read The Instructions and Of Course I Still Love You after SpaceX began true landing attempts.
In fact, the first intact recovery didn’t even take place on a drone ship after years of extensive testing at sea – in December 2015, after separating from its Orbcomm-2 satellite constellation payload, Falcon 9 B1019 became the first booster recovered by SpaceX in one piece, landing almost flawlessly at the company’s just-finished Cape Canaveral landing zone, known as LZ-1. Several months later, SpaceX successfully recovered its first Falcon 9 at sea, landing a booster on OCISLY shortly after launching the CRS-8 Cargo Dragon mission, although several more failures or near-failures followed as recovery technicians and engineers worked through a diverse and unpredictable series of challenges as they arose.
Rocket recovery: it’s not easy
Even in 2018, SpaceX unintentionally expended Falcon Heavy’s center core, demonstrating that even three dozen successful Falcon 9 and Heavy booster recoveries are not necessarily enough to shine light on or predict all possible modes of failure. Around 7:21 PM (PDT) today, barring a scrubbed launch attempt, the already-flown Falcon 9 booster B1048 – refurbished from landing to launch in just ~74 days – will likely launch and land once more, and most of the world wont even blink and eye. In the eyes of those that don’t or haven’t followed SpaceX obsessively, rocket booster recovery and reuse is to some extent already perceived as routine, logical, and inevitable less than three years after the technology’s first true Kitty Hawk moment.
- One half of SpaceX’s Iridium-6/GRACE-FO just moments before touchdown on the Pacific Ocean. (SpaceX)
- Close. (SpaceX)
- Hans Koenigsmann was extremely excited about the condition of this particular fairing half, and included this photo in his IAC 2018 keynote. (SpaceX)
The point of this brief SpaceX history lesson is to emphasize that fairing recovery is an extremely young technology, even for SpaceX. Before Mr. Steven swooped into existence, SpaceX had begun attempting to softly land payload fairings in the ocean around the start of 2017, and Mr. Steven famously returned to Port of San Pedro with an intact (but unreusable) fairing half in March 2018 after successfully launching Earth-imaging satellite PAZ. Comparing historical apples to present-day oranges, it may be safe to assume that fairing recovery’s Orbcomm-2 moment – Mr. Steven’s first successful catch – is already on the horizon.
In the meantime, it never hurts to remind oneself that – vicarious frustrations aside – observers are likely watching history unfold in real-time once again. SpaceX’s SAOCOM-1A launch webcast will begin around 7PM PDT – 15 or 20 minutes prior to launch – and can be found at the link below.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
SpaceX set to launch Axiom’s mission for diabetes research on the ISS
Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.
Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).
The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.
Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.
“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.
Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.
The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.
Elon Musk
EU considers SES to augment Starlink services
The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.
In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.
Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.
“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.
SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.
“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.
Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.
“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.
SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.
News
Amazon launches Kuiper satellites; Can it rival Starlink?
With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.
Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.
Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.
Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.
United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.
Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.
“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”
Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.
Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.
-
News1 week ago
Tesla’s Hollywood Diner is finally getting close to opening
-
Elon Musk2 weeks ago
Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline
-
News6 days ago
Tesla is trying to make a statement with its Q2 delivery numbers
-
Investor's Corner1 week ago
LIVE BLOG: Tesla (TSLA) Q1 2025 Company Update and earnings call
-
Elon Musk2 weeks ago
Tesla reportedly suspended Cybercab and Semi parts order amid tariff war: Reuters
-
SpaceX2 weeks ago
SpaceX pitches subscription model for Trump’s Golden Dome
-
News2 weeks ago
Driverless Teslas using FSD Unsupervised are starting to look common in Giga Texas
-
News3 days ago
NY Democrats are taking aim at Tesla direct sales licenses in New York