News
SpaceX Falcon 9 “Block 5” next-gen reusable rocket spied in Texas test site
SpaceX’s next and final generation of Falcon rockets is nearly ready to complete its biggest milestone yet, second only to operational launch. Known as Falcon 9 Block 5, the upgraded booster arrived at SpaceX’s McGregor, TX test facilities and went vertical on the static fire test stand.
Now vertical, that first integrated static fire is likely to occur within a handful of days at most. Once complete, assuming the data it produces do not betray any bugs or serious problems, the booster will be brought horizontal and transported to one of SpaceX’s three launch facilities for its first operational mission.
Why Block 5?
With nary a hint of hyperbole, it’s safe to say that Falcon 9 Block 5 will be the most significant piece of hardware ever developed and fielded by SpaceX. The reason lies in many of the changes and upgrades present in this newest iteration of the rocket. While Falcon 9 B5 and its similarly upgraded Merlin 1D engines include design changes intended to satisfy NASA requirements before SpaceX can be certified to launch humans, the brunt of the upgrades are laser-focused on ease and speed of reusability.
- SpaceX Block 5 Falcon9 at McGregor, Texas [Credit: Chris G – NSF via Twitter, Reprinted with permission from NASASpaceflight.com]
- SpaceX Block 5 Falcon9 at McGregor, Texas [Credit: Chris G – NSF via Twitter, Reprinted with permission from NASASpaceflight.com]
- SpaceX Block 5 Falcon9 at McGregor, Texas [Credit: Chris G – NSF via Twitter, Reprinted with permission from NASASpaceflight.com]
Photo courtesy of Chris G at nasaspaceflight.com via Twitter. Reprinted with permission.
The goal with those upgrades, as publicly stated by numerous SpaceX executives, is to enable as many as 10 flights with a bare minimum of refurbishment and 100 or more launches with intermittent maintenance. To achieve those titanic aspirations, SpaceX has gathered a flood of data and experience earned through the recovery of nearly 20 Falcon 9 and Heavy boosters, as well as the successful reflight and second recovery of several of those same boosters. With that data in hand, the company’s launch vehicle engineers optimized and upgraded the rocket’s design to combat the worst of the extreme forces each booster is subjected to while returning to land (or sea).
- Falcon Heavy side booster B1025 gives a sense of the sheer brutality of reentry conditions. (Tom Cross)
- Note the pieces of cork that have been torn off by the buffeting and heat on the lefthand side. (Tom Cross)
- An incredibly detail shot of the side of the octaweb. The large chunk of smooth metal in the center is actually one of the booster’s connection points to the Falcon Heavy center core. (Tom Cross/Teslarati)
- A beautiful capture of one of the booster’s nine Merlin engines, showing off the pipe used to cool the engine bell, as well as the ceramic blanket that protects its more sensitive plumbing. (Tom Cross/Teslarati)
As evidenced by photos taken by Gary Blair, one of NASASpaceflight.com‘s most renowned L2 forum contributors, many of the visible differences between Block 5 and previous versions of Falcon 9 are a result of drastically improved and expanded heat shielding of its most sensitive and crucial components. While Falcon 9 B5’s black sections by all appearances look like naked carbon fiber composite, they are likely to be coated with an incredibly heat-resistant material known a Pyron. Portions of the booster that suffer from incidental scorching and extreme heating (aside from the octaweb) appear to have been treated with this material, including a pathway down the side of the rocket known as a raceway. The raceway is a protective enclosure for a variety of cabling and piping, essentially the rocket’s nervous system as well as the home of several the cold gas thrusters it uses to orient itself outside of Earth’s atmosphere.
In the past, SpaceX has used high-quality cork as a quasi-ablative thermal protection system for those same components, including the payload fairing. A major downside of cork, however, is that it is very ablative and tends to come off rather haphazardly in large chunks, all of which must either be spot-fixed or replaced entirely before a booster reflight. By replacing that cork with Pyron or a similar internally-developed material, those sensitive Falcon components may be almost totally insulated from and resistant to temperatures as high as 2300 °F (1200 °C)
- Block 5 looks similar to this Falcon 9, but with a deep black interstage and a black enclosure instead of the white covering seen running down the left side of the booster. (SpaceX)
Titanium grid fins are another central feature of Block 5, acting as a near-indefinitely reusable replacement for the aluminum grid fins SpaceX has traditionally used. Put through a huge amount of heating during reentry; aluminum grid fins have famously appeared to partially melt during some of the hottest booster recovery attempts. Titanium, a metal with a much higher melting point, will have no such problems, does not need ablative white paint, and certainly appear all but untouched by reentry in the cases of both their June 2017 debut and second flight on Falcon Heavy’s side boosters.
Finally and perhaps most importantly, is the octaweb – the assembly at the base of Falcon 9 responsible for safely transmitting nearly two million pounds of thrust from its nine Merlin 1Ds to the rest of the rocket’s structure, while also taking the brunt of the heat of reentry. Before Block 5, the octaweb was protected from that heating with an ablative thermal protection system, likely around 80% cork and 20% PICA-X, the same material used on Cargo Dragon’s heat shield. Based on comments made privately by individuals familiar with SpaceX, that ablative shielding is to be replaced by a highly heat-resistant metal alloy known as inconel. By ridding Block 5 of ablative heat shielding, SpaceX will no longer have to carefully examine and replace those materials after each launch, removing one of the biggest refurbishment time-sinks.

Titanium grid fins complete the highly reusable changes to Block 5 of Falcon 9. (NASA)
Combined, these various upgrades are intended to enable Falcon 9’s first stage to be reused almost effortlessly compared to previous iterations. With this vehicle, including the reusable fairing debuted on the launch of PAZ, SpaceX may well be able to achieve Elon Musk’s famous goal of lowering the cost of launch by nearly an order of magnitude. While SpaceX will likely use that cost reduction to first recoup its considerable investments in reusability and Falcon Heavy, major price drops may reach customers soon after. This Falcon 9, in particular, is unlikely to launch for another month or so, but when it does, it is perhaps the biggest step SpaceX has yet taken on the path to routine, rapid, and affordable access to orbit.
Teslarati – Instagram – Twitter
Tom Cross – Twitter
Pauline Acalin – Twitter
Eric Ralph – Twitter
Elon Musk
Elon Musk doubles down on Tesla Cybercab timeline once again
“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.
CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.
It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.
On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.
Cybercab, which has no pedals or steering wheel, starts production in April https://t.co/yShxZ2HJqp
— Elon Musk (@elonmusk) February 16, 2026
Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.
One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.
Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.
However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.
In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.
Elon Musk shares incredible detail about Tesla Cybercab efficiency
On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.
Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”
Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.
Elon Musk
Tesla owners explore potential FSD pricing options as uncertainty looms
We asked Tesla owners what the company should price Full Self-Driving moving forward, as now it’s going to be subscription-based. There were some interesting proposals.
Tesla is starting the process of removing the ability to purchase the Full Self-Driving suite outright, as it pulled the purchase option in the United States over the weekend.
However, there has been some indication by CEO Elon Musk that the price of the subscription will increase as the suite becomes more robust. But Tesla finds itself in an interesting situation with this: the take rate for Full Self-Driving at $99 per month is about 12 percent, and Musk needs a significant increase in this rate to reach a tranche in his new compensation package.
This leaves Tesla and owners in their own respective limbos: Tesla needs to find a price that will incentivize consumers to use FSD, while owners need Tesla to offer something that is attractive price-wise.
We asked Tesla owners what the company should price Full Self-Driving moving forward, as now it’s going to be subscription-based. There were some interesting proposals.
Price Reduction
Although people are willing to pay the $99 per month for the FSD suite, it certainly is too high for some owners. Many suggested that if Tesla would back down the price to $49, or somewhere around that region, many owners would immediately subscribe.
Others suggested $69, which would make a lot of sense considering Musk’s obsession with that number.
Different Pricing for Supervised and Unsupervised
With the release of the Unsupervised version of Full Self-Driving, Tesla has a unique opportunity to offer pricing for different attention level requirements.
$50/mo for supervised.
$300/mo for unsupervised including insurance.— pɦoɿɟ pᴉʌɒp (@CSUDavid) February 15, 2026
Unsupervised Full Self-Driving would be significantly more expensive, but not needed by everyone. Many people indicate they would still like to drive their cars manually from time to time, but others said they’d just simply be more than okay with only having Supervised FSD available in their cars.
Time-Based Pricing
Tesla could price FSD on a duration-based pricing model, including Daily, Weekly, Monthly, and Annual rates, which would incentivize longer durations with better pricing.
Annually, the rate could be $999 per year, while Monthly would stay at $99. However, a Daily pass of FSD would cost somewhere around $10, while a $30 per week cost seems to be ideal.
These all seem to be in line with what consumers might want. However, Tesla’s attitude with FSD is that it is the future of transportation, and with it offering only a Monthly option currently, it does not seem as if it will look as short-term as a Daily pass.
Tiered Pricing
This is perhaps the most popular option, according to what we’ve seen in comments and replies.
This would be a way to allow owners to pick and choose which FSD features they would like most and pay for them. The more features available to you, the more it costs.
For example, if someone only wanted Supervised driving and Autopark, it could be priced at $50 per month. Add in Summon, it could be $75.
This would allow people to pick only the features they would use daily.
News
Tesla leaves a single loophole to purchase Full Self-Driving outright
Tesla has left a single loophole to purchase Full Self-Driving outright. On Sunday, the option officially disappeared from the Online Design Studio in the United States, as Tesla transitioned to a Subscription-only purchasing plan for the FSD suite.
However, there is still one way to get the Full Self-Driving suite in an outright manner, which would not require the vehicle owner to pay monthly for the driver assistance program — but you have to buy a Model S or Model X.
Months ago, Tesla launched a special “Luxe Package” for the Model S and Model X, which included Full Self-Driving for the life of the vehicle, as well as free Supercharging at over 75,000 locations, as well as free Premium Connectivity, and a Four-Year Premium Service package, which includes wheel and tire protection, windshiel protection, and recommended maintenance.
🚨 Tesla increased the price of both the Model S and Model X by $10,000, but both vehicles now include the “Luxe Package,” which includes:
-Full Self-Driving
-Four years of included maintenance, tire and wheel repairs, and windshield repairs/replacements
-Free lifetime… pic.twitter.com/LKv7rXruml— TESLARATI (@Teslarati) August 16, 2025
It would also be available through the purchase of a Cyberbeast, the top trim of the Cybertruck lineup.
This small loophole would allow owners to avoid the monthly payment, but there have been some changes in the fine print of the program, as Tesla has added that it will not be transferable to subsequent vehicle owners or to another vehicle.
This goes for the FSD and the Supercharging offers that come with the Luxe Package.
For now, Tesla still has the Full Self-Driving subscription priced at $99 per month. However, that price is expected to increase over the course of some time, especially as its capabilities improve. Tesla seems to be nearing Unsupervised FSD based on Musk’s estimates for the Cybercab program.
There is the potential that Tesla offers both Unsupervised and Supervised FSD for varying prices, but this is not confirmed.
In other countries, Tesla has pushed back the deadline to purchase the suite outright, as in Australia, it has been adjusted to March 31.








