News
SpaceX Falcon 9 landing leg accidentally dropped during retraction attempt
SpaceX has accidentally dropped one of its newest Falcon 9 booster’s landing legs during a retraction attempt in Port Canaveral while crews worked to prepare the rocket for transport.
Falcon 9 booster B1060 safely arrived in Port Canaveral, Florida on July 4th after a flawless June 30th launch debut, delivering the US military’s GPS III SV03 navigation satellite to an accurate orbit and becoming the first SpaceX rocket to launch and land as part of an operational US military mission. The major landing milestone was supported by drone ship Just Read The Instructions (JRTI) as part of its second East Coast recovery mission ever after an ~8000 km (~5000 mi) journey from Los Angeles and months of slow and steady upgrades.
Thankfully, despite the mishap caught on camera by diligent, unofficial observers, things appeared to work out just fine for booster B1060 as crews threaded recovery operations between bouts of disruptive Florida weather.
Based on video of the accidental leg drop captured by US Launch Report on July 7th, the most obvious conclusion is that operators either failed to release tension on a winch line or some kind of hardware/software/sensor failure unintentionally over-stressed the line. Regardless, around the same time as Falcon 9 or its ground operators were likely commanding the landing leg latch closed, one or both of the lines attached to the top of the retracting leg snapped, causing it to very quickly redeploy as gravity pulled it back to earth.
Almost certainly by design, nobody was underneath the ~1000 kg (~2200 lb) landing leg during retraction, and a small stand used to prop up the leg for winch line installation seems to have been moved out of the line of fire as part of the process. As a result, when the leg was accidentally released, it simply fell onto drone ship JRTI’s flat, steel deck under its own weight. Most importantly, nobody was (visibly) injured or at risk of injury
The landing leg’s impact and aftershock looks undeniably harsh in the footage but the reality is that SpaceX has already performed almost identical tests (albeit intentionally) on recovered boosters while leg retraction was still in development. Captured in the video above, B1049’s September 2018 leg retraction and deployment test appeared to be marginally gentler than B1060’s accidental leg smack, and B1049 went on to complete four more orbital-class launches without issue. That still ignores the fact that Falcon 9’s landing legs are designed to withstand extremely rough landings of entire ~30 metric ton boosters traveling up to several meters per second (~5 mph) – vastly more force than a single landing leg can exert on itself with gravity as the only input.

Confirming those suspicions, SpaceX ultimately got back on the saddle after a few slight weather delays and successfully retracted all four of B1060’s landing legs without issue. The once-flown rocket was quickly broken over (referring to the process of lowering it horizontally) and installed on a custom transporter, which will soon move it from Port Canaveral to a nearby SpaceX hangar (likely Pad 39A’s) to prepare for its next launch.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.
Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections.
Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.
A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.
The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.
“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.
Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.
IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”
The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.
News
Tesla wins FCC approval for wireless Cybercab charging system
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.
Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system.
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.
Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”
The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”
Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”
Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”
As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.
While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.
Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.
Elon Musk
Tesla posts updated FSD safety stats as owners surpass 8 billion miles
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles.
Tesla shared the milestone in a post on its official X account.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.