News
SpaceX Falcon 9 rideshare will test the tools needed to build space stations in orbit
A SpaceX customer has announced that one of a future Falcon 9 rideshare missions will carry a technology demonstrator designed to prove that space stations can one day be built in space by cannibalizing expended rocket upper stages.
On November 18th, commercial space company Nanoracks revealed that it had manifested its first “In-Space Outpost” mission on one of SpaceX’s recently-announced Falcon 9 rideshare missions, scheduled to launch as early as Q4 2020. Known for its successful efforts to use the International Space Station’s capabilities to affordably deploy hundreds of commercial small satellites, Nanoracks has also branched out into organizing rideshare opportunities for smallsats on much larger launches, another method of lowering costs.
Most recently, however, Nanoracks began to pursue a new venture centered around building unprecedentedly affordable human-rated space stations in Earth orbit. While not fundamentally new, Nanoracks proposed a unique solution: modify expended launch vehicle upper stages already in orbit to build space stations in-situ.
It’s anyone’s guess whether such a concept can actually produce safe, affordable space stations and do so more effectively than the obvious alternative of designing, building, and launching already-finished space station components. Nevertheless, Nanoracks has firmly decided to attempt the feat. The technical hurdles alone will require numerous in-space demonstrations of custom hardware, and the Outpost Nanoracks has manifested on a Q4 2020 Falcon 9 rideshare mission will be the first of those attempted demonstrations.
“As a member of the Outpost program team, Maxar will develop a new articulating robotic arm with a friction milling end-effector for this mission. This friction milling will use high rotations per minute melting our metal material in such a way that a cut is made, yet we anticipate avoiding generating a single piece of orbital debris.
The mission is targeting a Q4 2020 dedicated rideshare mission, will fly on an ESPA ring, and will activate after the deployment of all other secondary payloads is complete. As our mission commences, we will have 30 minutes to one hour to complete the cutting of three metal pieces that are representative of various vehicle upper stages, including the Centaur 3. Nanoracks plans to downlink photos and videos of the friction milling and cutting.”
Nanoracks, 11/18/19

As described above, the first Outpost test will focus on proving that the metal tanks of upper stages can be manipulated and cut in orbit with robotic arms to be built by Maxar. The experimental mission will reportedly take place while the payload is still attached to Falcon 9’s upper stage payload adaptor and will carry along three separate propellant tank coupons instead of attempted to mill and cut Falcon 9 itself.
As one of SpaceX’s proposed rideshare missions, Nanoracks will likely be just one of a few dozen other customers or spacecraft catching a ride, and the Outpost experiment will only begin after all other satellites have successfully deployed. Earlier this year, SpaceX announced that Smallsat Rideshare Program and rapidly modified it soon after, adding numerous new launch opportunities and lowering the base price to from ~$2.25M (150 kg) to $1M for 200 kg (440 lb) of spacecraft or experiments. Aside from 3-4 annual dedicated launches, SpaceX also plans to reserve some amount of space on certain Starlink launches, dozens of which are currently planned annually.
Nanoracks’ Outpost-1 mission is expected to launch no earlier than Q4 2020.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
