News
SpaceX prepares Falcon 9 booster for eleventh launch and landing [webcast]
SpaceX has confirmed that Falcon 9 is on track to launch another batch of Starlink satellites less than 48 hours after a successful United Launch Alliance Atlas V from a pad just two miles south.
Falcon 9 is now scheduled to launch Starlink 4-9 from Kennedy Space Center (KSC) Launch Complex 39A no earlier than (NET) 9:35 am EST (14:35 UTC) on Thursday, March 3rd. Oddly, unlike Starlink 4-8, which successfully launched 46 Starlink satellites into low Earth orbit (LEO) on February 21st, Starlink 4-9 – following a seemingly identical trajectory – will carry 47 satellites. The reason for the small difference is unclear.
Last month, SpaceX suffered a significant anomaly when a “geomagnetic storm” warmed Earth’s atmosphere, causing 38 of 49 just-launched Starlink 4-7 satellites to prematurely reenter and burn up. In response, while SpaceX hasn’t officially confirmed the change, it appears that all subsequent Starlink missions are being launched to slightly higher parking orbits. In comparison, Starlink 4-4 – a West Coast mission – launched 52 satellites into a 340 x 210 kilometer (210 x 130 mi) parking orbit in December 2021. Starlink 4-7, an East Coast mission, launched 49 satellites into a 336 x 210 km parking orbit on February 3rd, losing three satellites to account for extra performance needed to safely dodge the Bahamas.
Following Starlink 4-7’s space weather calamity, SpaceX – using an identical trajectory – launched 46 Starlink 4-8 satellites (three fewer than 4-7) from the East Coast into a higher 337 x 325 km parking orbit on February 21st. On February 25th, SpaceX also launched 50 Starlink 4-11 satellites (a reduction of two) from the West Coast into a higher 316 x 306 km parking orbit. In short, after Starlink 4-7, SpaceX appears to be sacrificing a few Starlink satellites to launch to parking orbits that are slightly higher and thus slightly more stable.

In theory, this should entirely prevent a repeat of the Starlink 4-7 anomaly while only marginally increasing the amount of time it should take dead-on-arrival satellites to reenter. While doing so increases the number of satellites Falcon 9 can launch, the main reason SpaceX launches Starlink satellites to such low orbits is to ensure that any failed satellites reenter a matter of days to a few weeks after launch instead of the years it could take at their operational ~550 km (~340 mi) orbits.
Of course, that doesn’t explain why Starlink 4-9 is projected to launch one more Starlink satellite than Starlink 4-8. It’s possible that SpaceX is refining its new insertion orbit on the fly and that Starlink 4-9 is headed to a slightly lower destination after data gathered from 4-8 and 4-11. It’s also possible that SpaceX is tweaking some other aspect of Falcon 9’s mission profile or even modifying Starlink satellites (i.e. adding or subtracting mass) – neither of which would be out of the ordinary for the company.
Regardless, Starlink 4-9 is interesting for a few more reasons. First, it will mark drone ship Just Read The Instruction’s (JRTI) first recovery mission since a mistake made by its onboard Octagrabber rocket nearly lead to the loss of an entire Falcon 9 booster in December 2021. That implies that SpaceX has fully determined and rectified the cause of that anomaly and repaired both the drone ship and its robot. To reach its full launch cadence potential, SpaceX needs at least two operational drone ships on the East Coast. Otherwise, in lieu of rare low-performance missions that allow Falcon 9 boosters to fly back to land, SpaceX can only launch one East Coast Falcon 9 mission every 10 or so days and can’t support Falcon Heavy launches that require two at-sea booster landings.



Additionally, SpaceX has confirmed that Falcon 9 B1060 will launch Starlink 4-9. The mission will be its 11th launch and landing attempt, hopefully making it the third Falcon 9 booster to successfully support 11 orbital-class launches after B1051 and B1058. Together, that means that 3 (15%) of the 19 Falcon 9 Block 5 boosters SpaceX has debuted will have singlehandedly supported 33 (37%) of the 89 Falcon 9 launches the company has completed since May 2018. It’s difficult to imagine a more resounding affirmation of SpaceX’s work on reusability.
Tune in to SpaceX Starlink 4-9 webcast around 9:20 am EST (14:20 UTC) on Thursday, March 3rd to watch the launch live.
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”