Connect with us

News

SpaceX Falcon Heavy beats out ULA Vulcan rocket for NASA Moon rover launch

Published

on

SpaceX’s Falcon Heavy rocket appears to have edged out competitor United Launch Alliance’s (ULA) next-generation Vulcan Centaur launch vehicle to send a NASA rover and commercial lander to the Moon in 2023.

Back in August 2019, not long after NASA first began announcing significant contracts under its Commercial Lunar Payload Services (CLPS) program, startup Astrobotic announced that it contracted with ULA to launch its first small “Peregrine” lander and a dozen or so attached NASA payloads to the Moon in 2021. Rather than the extremely expensive but operational Atlas V rocket, the startup instead chose to manifest Peregrine on the first launch of Vulcan Centaur, a new ULA rocket meant to replace both Atlas V and Delta IV Heavy.

Less than two years later, Astrobotic has decided to purchase a dedicated launch from SpaceX – not ULA – for even larger “Griffin” lander that aims to deliver NASA’s ice-prospecting VIPER rover to the Moon and kick off the exploration of permanently-shadowed craters at its south pole.

Astrobotic’s Griffin lander and NASA’s VIPER rover. (Astrobotic)

Back in August 2019, Astrobotic’s announcement stated that “it selected United Launch Alliance’s (ULA) Vulcan Centaur rocket in a [highly competitive commercial process].” It later became clear that the Peregrine lander – while still scheduled to be sent directly to the Moon on a trans-lunar injection (TLI) trajectory – would not be the only payload on the mission. None of Vulcan Flight 1’s other payloads are known, but the presence of other paying customers helps explain how Vulcan beat SpaceX for the contract.

More importantly, companies willing to risk their payload(s) on new rockets have historically been enticed to overlook some of that first-flight risk with major discounts. In other words, in the often unlikely event that a company manages to sell a commercial rocket’s first launch, it’s incredibly unlikely that the same rocket will ever sell that cheaply again.

Falcon Heavy Flight 3 made use of both flight-proven side boosters and a new center core. Note the scorched landing legs and sooty exteriors. (SpaceX)
It’s likely that Griffin-1 and VIPER will launch on a Falcon Heavy rocket with two or all three of its boosters already flight-proven. (NASA – Kim Shiflett)
Peregrine. (Astrobotic)
Griffin is substantially larger and more complex than Peregrine, which is scheduled to attempt its first Moon landing some 6-9 months from now. (Astrobotic)

That appears to be exactly the case for ULA’s Vulcan Centaur rocket, which secured a lunar lander contract for its launch debut only to lose a similar lunar lander launch contract from the same company – well within the range of Vulcan’s claimed capabilities – less than two years later. If SpaceX’s relatively expensive Falcon Heavy managed to beat early Vulcan launch pricing, there is virtually no chance whatsoever that Vulcan Centaur will ever be able to commercially compete with Falcon 9.

Advertisement

In fact, back in 2015 when Astrobotic began making noise about its plans to build commercial Moon landers, the larger Griffin was expected to weigh some 2220 kg (~4900 lb) fully-fueled and – when combined with SpaceX’s Falcon 9 workhorse – be able to land payloads as large as 270 kg (~600 lb) on the Moon. It’s unclear if that figure assumed an expendable Falcon 9 launch or if it was using numbers from the rocket’s most powerful variant, which was still a few years away at the time.

Either way, NASA’s VIPER lander – expected to have a launch mass of ~430 kg (~950 lb) – is a bit too heavy for a single-stick Falcon 9 flight to TLI. It’s also reasonable to assume that Griffin’s dry and fueled mass has grown substantially after more than half a decade of design maturation and the first Peregrine lander reaching the hardware production and assembly phase. While Falcon 9 narrowly falls short of the performance needed for Griffin/VIPER, a fully recoverable Falcon Heavy is capable of launching more than 6.5 metric tons to TLI, offering a safety margin of almost 100%.

Astrobotic says it has purchased a dedicated Falcon Heavy launch for Griffin-1 and VIPER, but it would be far from surprising to see one or multiple secondary payloads find their way onto a mission with multiple tons of extra capacity. Presumably assuming that its Q4 2021 or early 2022 Peregrine Moon landing debut is successful, Astrobotic and SpaceX aim to land Griffin-1 and NASA’s VIPER rover on the Moon as early as “late 2023.”

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading