Connect with us

News

SpaceX’s first Falcon Heavy launch in two years is finally coming together

Published

on

For the first time in more than two years, SpaceX’s next Falcon Heavy launch and dual-booster landing appears to be right around the corner – and it comes with a catch.

In February 2018, after years of anticipation, SpaceX successfully launched its triple-booster Falcon Heavy rocket for the first time in a spectacular show of force. Though the ‘center core’ booster got a little melty on its extremely high-speed reentry and was lost before it could attempt to land, the rocket’s twin side boosters performed an iconic near-simultaneous landing just a handful of miles away from where they lifted off.

Then Falcon Heavy took a good, long break. Ultimately, it would turn out that the debut vehicle was effectively a one-off and over the course of 14 months, SpaceX fairly quickly designed, built, and qualified an entirely new Falcon Heavy rocket based on Falcon 9’s new and improved Block 5 variant. In April 2019, after a few minor delays, that Falcon Heavy Block 5 rocket completed its own launch debut and first mission for a paying customer. This time around, all three boosters – two by land and one by sea – survived reentry and performed flawless landings on a drone ship and two Landing Zones.

A mere two months later, both of Falcon Heavy Block 5’s first two recovered side boosters flew again in support of the US Air Force’s STP-2 mission – a combined demonstration flight and rideshare mostly designed to push the rocket to its limits and help the military qualify it for high-value payloads. Once more, those side boosters successfully returned for a simultaneous landing at SpaceX’s Landing Zones but the mission’s Block 5 center core’s reentry was – as SpaceX itself partially expected – too hot, burning essential components and resulting in a hard ‘landing’ in the Atlantic Ocean. Otherwise, the mission was a spectacular success and gave the US military practically all the data it needed to qualify the world’s largest operational rocket to launch its payloads.

Shockingly, however, that June 2019 launch would end up being Falcon Heavy’s third and latest. In the almost 26 months since, the rocket hasn’t flown once. Originally scheduled to launch a fourth time as early as Q4 2020, the COVID-19 pandemic ultimately delayed the rocket’s next two launches (or gave the satellite manufacturer(s) perfect scapegoats for technical delays) into 2021.

Advertisement
-->

Known as USSF-44 and USSF-52 (formerly AFSPC-44/52), both missions are scheduled to launch ethereal US military spy and/or communications satellites. USSF-44 is arguably the most important, as it will mark SpaceX’s first direct launch to geostationary orbit (GEO) for any customer – let alone one as exacting as the US military. USSF-52 is a much simpler and more traditional launch to an elliptical geostationary transfer orbit (GTO).

About a year ago, for unknown reasons, the two missions swapped positions, with USSF-44 taking the lead. Expected to launch in June 2021 as of early this year, SpaceflightNow first reported that USSF-44 had slipped further still to October – and USSF-52 into 2022 – this May. Since then, that’s where the mission’s schedule has tentatively lain.

Finally, on August 12th, SpaceX filed an FCC application for rocket communication permissions. While otherwise ordinary, this particular request stated that it was for Falcon Heavy recovery operations and, more specifically, for the simultaneous recovery of two Falcon Heavy boosters at sea. Out of an abundance of caution and conservatism and combined with the generally challenging nature of direct-to-GEO launches, Falcon Heavy’s first such mission for the US military will require SpaceX to expend the rocket’s center booster and recover both side boosters at sea with two separate drone ships.

Falcon Heavy’s USSF-52 GTO launch isn’t as demanding and its mission profile is expected to allow SpaceX to recover all three boosters. As such, an FCC filing for a dual-drone-ship Falcon Heavy side booster recoveries practically guarantees that it’s for USSF-44. Per the application, SpaceX expects the mission to occur no earlier than September 25th. Almost simultaneously, launch photographer Ben Cooper also updated a long-running list of upcoming East Coast launches, confirming that Falcon Heavy’s fourth launch (USSF-44) remains on track for October 2021.

Ultimately, while delays are possible and likely probable, there now appears to be a strong chance that Falcon Heavy will launch for the first time in 28 months before the end of 2021.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films

A Starship that launches from the Florida site could touch down on the same site years later.

Published

on

Credit: SpaceX/X

The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.

According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies. 

Booster in Minutes, Ship in (possibly) years

The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.

“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.

This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.

Advertisement
-->

Noise and emissions flagged but deemed manageable

While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.

Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.

SpaceX Starship Environmental Impact Statement by Simon Alvarez

Continue Reading

News

Tesla Full Self-Driving (FSD) testing gains major ground in Spain

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.

Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.

Spain’s ES-AV framework

Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.

“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote. 

The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Advertisement
-->
Credit: DGT

Tesla FSD tests

As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.

The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed. 

Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.

Continue Reading

News

Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.

Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.

FSD V14.2.1 first impressions

Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”

Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.

Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall. 

Advertisement
-->

Sign recognition and freeway prowess

Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.

FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.

FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”

Continue Reading