Connect with us

News

SpaceX’s first Falcon Heavy launch in two years is finally coming together

Published

on

For the first time in more than two years, SpaceX’s next Falcon Heavy launch and dual-booster landing appears to be right around the corner – and it comes with a catch.

In February 2018, after years of anticipation, SpaceX successfully launched its triple-booster Falcon Heavy rocket for the first time in a spectacular show of force. Though the ‘center core’ booster got a little melty on its extremely high-speed reentry and was lost before it could attempt to land, the rocket’s twin side boosters performed an iconic near-simultaneous landing just a handful of miles away from where they lifted off.

Then Falcon Heavy took a good, long break. Ultimately, it would turn out that the debut vehicle was effectively a one-off and over the course of 14 months, SpaceX fairly quickly designed, built, and qualified an entirely new Falcon Heavy rocket based on Falcon 9’s new and improved Block 5 variant. In April 2019, after a few minor delays, that Falcon Heavy Block 5 rocket completed its own launch debut and first mission for a paying customer. This time around, all three boosters – two by land and one by sea – survived reentry and performed flawless landings on a drone ship and two Landing Zones.

A mere two months later, both of Falcon Heavy Block 5’s first two recovered side boosters flew again in support of the US Air Force’s STP-2 mission – a combined demonstration flight and rideshare mostly designed to push the rocket to its limits and help the military qualify it for high-value payloads. Once more, those side boosters successfully returned for a simultaneous landing at SpaceX’s Landing Zones but the mission’s Block 5 center core’s reentry was – as SpaceX itself partially expected – too hot, burning essential components and resulting in a hard ‘landing’ in the Atlantic Ocean. Otherwise, the mission was a spectacular success and gave the US military practically all the data it needed to qualify the world’s largest operational rocket to launch its payloads.

Shockingly, however, that June 2019 launch would end up being Falcon Heavy’s third and latest. In the almost 26 months since, the rocket hasn’t flown once. Originally scheduled to launch a fourth time as early as Q4 2020, the COVID-19 pandemic ultimately delayed the rocket’s next two launches (or gave the satellite manufacturer(s) perfect scapegoats for technical delays) into 2021.

Advertisement
-->

Known as USSF-44 and USSF-52 (formerly AFSPC-44/52), both missions are scheduled to launch ethereal US military spy and/or communications satellites. USSF-44 is arguably the most important, as it will mark SpaceX’s first direct launch to geostationary orbit (GEO) for any customer – let alone one as exacting as the US military. USSF-52 is a much simpler and more traditional launch to an elliptical geostationary transfer orbit (GTO).

About a year ago, for unknown reasons, the two missions swapped positions, with USSF-44 taking the lead. Expected to launch in June 2021 as of early this year, SpaceflightNow first reported that USSF-44 had slipped further still to October – and USSF-52 into 2022 – this May. Since then, that’s where the mission’s schedule has tentatively lain.

Finally, on August 12th, SpaceX filed an FCC application for rocket communication permissions. While otherwise ordinary, this particular request stated that it was for Falcon Heavy recovery operations and, more specifically, for the simultaneous recovery of two Falcon Heavy boosters at sea. Out of an abundance of caution and conservatism and combined with the generally challenging nature of direct-to-GEO launches, Falcon Heavy’s first such mission for the US military will require SpaceX to expend the rocket’s center booster and recover both side boosters at sea with two separate drone ships.

Falcon Heavy’s USSF-52 GTO launch isn’t as demanding and its mission profile is expected to allow SpaceX to recover all three boosters. As such, an FCC filing for a dual-drone-ship Falcon Heavy side booster recoveries practically guarantees that it’s for USSF-44. Per the application, SpaceX expects the mission to occur no earlier than September 25th. Almost simultaneously, launch photographer Ben Cooper also updated a long-running list of upcoming East Coast launches, confirming that Falcon Heavy’s fourth launch (USSF-44) remains on track for October 2021.

Ultimately, while delays are possible and likely probable, there now appears to be a strong chance that Falcon Heavy will launch for the first time in 28 months before the end of 2021.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hosts Rome Mayor for first Italian FSD Supervised road demo

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.

Published

on

Credit: @andst7/X

Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration. 

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.

Rome officials experience FSD Supervised

Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.

The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.

Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.

Advertisement
-->

Path to European rollout

Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.

Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.

Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”

Continue Reading

News

Tesla FSD (Supervised) blows away French journalist after test ride

Cadot described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) seems to be making waves in Europe, with French tech journalist Julien Cadot recently sharing a positive first-hand experience from a supervised test drive in France. 

Cadot, who tested the system for Numerama after eight years of anticipation since early Autopilot trials, described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.

 

Julien Cadot’s FSD test in France

Cadot announced his upcoming test on X, writing in French: “I’m going to test Tesla’s FSD for Numerama in France. 8 years I’ve been waiting to relive the sensations of our very first contact with the unbridled Autopilot of the 2016s.” He followed up shortly after with an initial reaction, writing: “I don’t want to spoil too much because as media we were allowed to film everything and I have a huge video coming… But: it’s mind-blowing! Both for safety and for the ‘humanity’ of the choices.”

His later posts detailed FSD’s specific maneuvers that he found particularly compelling. These include the vehicle safely overtaking a delivery truck by inches, something Cadot said he personally would avoid to protect his rims, but FSD handled flawlessly. He also praised FSD’s cyclist overtakes, as the system always maintained the required 1.5-meter distance by encroaching on the opposite lane when clear. Ultimately, Cadot noted FSD’s decision-making prioritized safety and advancement, which is pretty remarkable.

Advertisement
-->

FSD’s ‘human’ edge over Autopilot

When asked if FSD felt light-years ahead of standard Autopilot, Cadot replied: “It’s incomparable, it’s not the same language.” He elaborated on scenarios like bypassing a parked delivery truck across a solid white line, where FSD assessed safety and proceeded just as a human driver might, rather than halting indefinitely. This “humanity” impressed Cadot the most, as it allowed FSD to fluidly navigate real-world chaos like urban Paris traffic. 

Tesla is currently hard at work pushing for the rollout of FSD to several European countries. Recent reports have revealed that Tesla has received approval to operate 19 FSD test vehicles on Spain’s roads, though this number could increase as the program develops. As per the Dirección General de Tráfico (DGT), Tesla would be able to operate its FSD fleet on any national route across Spain. Recent job openings also hint at Tesla starting FSD tests in Austria. Apart from this, the company is also holding FSD demonstrations in Germany, France, and Italy.

Continue Reading

Elon Musk

Tesla Optimus shows off its newest capability as progress accelerates

Published

on

Credit: Tesla

Tesla Optimus showed off its newest capability as progress on the project continues to accelerate toward an ultimate goal of mass production in the coming years.

Tesla is still developing Optimus and preparing for the first stages of mass production, where units would be sold and shipped to customers. CEO Elon Musk has always marketed the humanoid robot as the biggest product in history, even outside of Tesla, but of all time.

He believes it will eliminate the need to manually perform monotonous tasks, like cleaning, mowing the lawn, and folding laundry.

However, lately, Musk has revealed even bigger plans for Optimus, including the ability to relieve humans of work entirely within the next 20 years.

Development at Tesla’s Artificial Intelligence and Robotics teams has progressed, and a new video was shown of the robot taking a light jog with what appeared to be some pretty natural form:

Optimus has also made several public appearances lately, including one at the Neural Information Processing Systems, or NeurIPS Conference. Some spectators shared videos of Optimus’s charging rig, as well as its movements and capabilities, most interestingly, the hand:

The hand, forearm, and fingers have been one of the most evident challenges for Tesla in recent times, especially as it continues to work on its 3rd Generation iteration of Optimus.

Musk said during the Q3 Earnings Call:

“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”

The interesting part of the Optimus program so far is the fact that Tesla has made a lot of progress with other portions of the project, like movement, for example, which appears to have come a long way.

However, without a functional hand and fingers, Optimus could be rendered relatively useless, so it is evident that it has to figure this crucial part out first.

Continue Reading