News
SpaceX’s first Falcon Heavy launch in two years is finally coming together
For the first time in more than two years, SpaceX’s next Falcon Heavy launch and dual-booster landing appears to be right around the corner – and it comes with a catch.
In February 2018, after years of anticipation, SpaceX successfully launched its triple-booster Falcon Heavy rocket for the first time in a spectacular show of force. Though the ‘center core’ booster got a little melty on its extremely high-speed reentry and was lost before it could attempt to land, the rocket’s twin side boosters performed an iconic near-simultaneous landing just a handful of miles away from where they lifted off.
Then Falcon Heavy took a good, long break. Ultimately, it would turn out that the debut vehicle was effectively a one-off and over the course of 14 months, SpaceX fairly quickly designed, built, and qualified an entirely new Falcon Heavy rocket based on Falcon 9’s new and improved Block 5 variant. In April 2019, after a few minor delays, that Falcon Heavy Block 5 rocket completed its own launch debut and first mission for a paying customer. This time around, all three boosters – two by land and one by sea – survived reentry and performed flawless landings on a drone ship and two Landing Zones.
A mere two months later, both of Falcon Heavy Block 5’s first two recovered side boosters flew again in support of the US Air Force’s STP-2 mission – a combined demonstration flight and rideshare mostly designed to push the rocket to its limits and help the military qualify it for high-value payloads. Once more, those side boosters successfully returned for a simultaneous landing at SpaceX’s Landing Zones but the mission’s Block 5 center core’s reentry was – as SpaceX itself partially expected – too hot, burning essential components and resulting in a hard ‘landing’ in the Atlantic Ocean. Otherwise, the mission was a spectacular success and gave the US military practically all the data it needed to qualify the world’s largest operational rocket to launch its payloads.
Shockingly, however, that June 2019 launch would end up being Falcon Heavy’s third and latest. In the almost 26 months since, the rocket hasn’t flown once. Originally scheduled to launch a fourth time as early as Q4 2020, the COVID-19 pandemic ultimately delayed the rocket’s next two launches (or gave the satellite manufacturer(s) perfect scapegoats for technical delays) into 2021.
Known as USSF-44 and USSF-52 (formerly AFSPC-44/52), both missions are scheduled to launch ethereal US military spy and/or communications satellites. USSF-44 is arguably the most important, as it will mark SpaceX’s first direct launch to geostationary orbit (GEO) for any customer – let alone one as exacting as the US military. USSF-52 is a much simpler and more traditional launch to an elliptical geostationary transfer orbit (GTO).
About a year ago, for unknown reasons, the two missions swapped positions, with USSF-44 taking the lead. Expected to launch in June 2021 as of early this year, SpaceflightNow first reported that USSF-44 had slipped further still to October – and USSF-52 into 2022 – this May. Since then, that’s where the mission’s schedule has tentatively lain.
Finally, on August 12th, SpaceX filed an FCC application for rocket communication permissions. While otherwise ordinary, this particular request stated that it was for Falcon Heavy recovery operations and, more specifically, for the simultaneous recovery of two Falcon Heavy boosters at sea. Out of an abundance of caution and conservatism and combined with the generally challenging nature of direct-to-GEO launches, Falcon Heavy’s first such mission for the US military will require SpaceX to expend the rocket’s center booster and recover both side boosters at sea with two separate drone ships.
Falcon Heavy’s USSF-52 GTO launch isn’t as demanding and its mission profile is expected to allow SpaceX to recover all three boosters. As such, an FCC filing for a dual-drone-ship Falcon Heavy side booster recoveries practically guarantees that it’s for USSF-44. Per the application, SpaceX expects the mission to occur no earlier than September 25th. Almost simultaneously, launch photographer Ben Cooper also updated a long-running list of upcoming East Coast launches, confirming that Falcon Heavy’s fourth launch (USSF-44) remains on track for October 2021.
Ultimately, while delays are possible and likely probable, there now appears to be a strong chance that Falcon Heavy will launch for the first time in 28 months before the end of 2021.
Elon Musk
Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD).
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
10 billion miles of training data
Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly.
“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote.
Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles.
FSD’s total training miles
As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program.
The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”
News
Tesla earns top honors at MotorTrend’s SDV Innovator Awards
MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.
As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla leaders and engineers recognized
The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.
Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.
Tesla’s software-first strategy
While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.
This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.
Elon Musk
Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury
The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.
A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial.
The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.
Judge says disputed facts warrant a trial
At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.
Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”
OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.
Rivalries and Microsoft ties
The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.
The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.
Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.