News
SpaceX Falcon Heavy rocket rolls out for first launch of 2023
SpaceX has assembled Falcon Heavy and rolled the rocket out to the launch pad for its first mission of 2023.
This particular Falcon Heavy – the fifth overall – is reusing both of the side boosters recovered from the rocket’s fourth launch. Originally scheduled to launch in late 2020, Falcon Heavy Flight 4 finally lifted off from the NASA Kennedy Space Center’s LC-39A pad on November 1st, 2022. The two-year delay was caused almost exclusively by unspecified issues with one or several of the US Space Force-44 (USSF-44) mission’s payloads, forcing SpaceX to store completed Falcon Heavy boosters for more than a year and a half.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air
— Wes (@wmorrill3) April 16, 2024
Thankfully, despite an unplanned 40-month hiatus between missions, the US Space Force reported that Falcon Heavy’s fourth launch was a “simply outstanding” success. USSF-44 was SpaceX’s first attempt at a direct geosynchronous launch – one of the most difficult missions for rockets that use cryogenic liquid propellant. Falcon Heavy first launched payloads to a highly-elliptical parking orbit (~300 km x ~36,000 km) and then coasted for around six hours in the harsh vacuum of space. Once the Falcon upper stage reached that 36,000-kilometer (~22,250 mi) apogee, all the while fighting to keep its propellant from freezing into slush and boiling into gas, it ignited again to complete a circularization burn – raising the low end of its orbit (perigee) to match the apogee.
The payloads were likely deployed around 6-8 hours after liftoff. To complete such a challenging mission, SpaceX was forced to intentionally sacrifice one of Falcon Heavy’s three potentially reusable boosters. But about eight minutes after liftoff, both of the rocket’s side boosters safely touched down side by side at SpaceX’s LZ-1 and LZ-2 landing zones. Before the launch, military officials had confirmed that those boosters – B1064 and B1065 – were already expected to fly again on Falcon Heavy’s next Space Force launch, USSF-67.
Less than 70 days after their first launch and landing, SpaceX has refurbished B1064 and B1065; attached the boosters to another expendable Falcon Heavy center core and upper stage, and rolled the rocket out to Pad 39A for prelaunch testing. Its payloads and exact launch time are different, but USSF-67 is expected to be virtually identical to USSF-44 – launching directly to GSO with a lightweight collection of miscellaneous experiments and small satellites. The center core will be expended and B1064 and B1065 will attempt another simultaneous landing at LZ-1 and LZ-2.


Like USSF-44, USSF-67’s rocket rolled out for the first time without its cone-like payload fairing installed. Up next, Falcon Heavy will need to complete a wet dress rehearsal and static fire test before SpaceX and the USSF can clear it for flight. SpaceX will then lower the rocket to the ground, return it to the hangar, install the USSF-67 payload, roll the rocket back to the pad, and raise it vertical.
Unofficial but well-sourced public manifests report that SpaceX intends to launch USSF-67 four days from now, shortly before 6 pm EST (23:00 UTC) on Friday, January 13th. SpaceX took five and a half days to complete the same process for USSF-44, so a delay to January 14th or 15th would not be surprising. But at the moment, Friday’s launch attempt is scheduled shortly after sunset, potentially producing the same kind of extraordinary light shows Falcon 9 has become famous for. However, that show would be significantly magnified by Falcon Heavy’s three boosters and twin boostback burns, potentially making it one of the most visually spectacular launches ever.

News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.