News
SpaceX on track to launch four rockets next month despite Falcon Heavy delays
Despite the intense focus on SpaceX’s first Falcon Heavy launch attempt and the testing preceding it, SpaceX is still a functioning business, and that business lies in launching payloads into Earth orbit. While it appears that January is unlikely to see any additional SpaceX launches, particularly Falcon Heavy, the launch company’s February manifest appears to be rapidly firming up.
Perhaps most significantly, two geostationary communications satellites completed their long journeys to Cape Canaveral, Florida within the last week or so, and a third payload on the West Coast is presumed to be at Vandenberg Air Force Base, all preparing for February launches. Meanwhile, although it is unclear how close Falcon Heavy is to launching, a date in mid to late February appears realistic at this point. As such, SpaceX has at least three and maybe four missions concretely planned for February – concrete in the sense that three of them were given specific launch dates within the last week.

Falcon Heavy is now targeting Friday, January 19 for its first static fire test. (Tom Cross/Teslarati)
A return to stride
Following a halcyon year of 18 launches, SpaceX appears to be ready to tackle its manifest headfirst after a relatively relaxed start to 2018. January saw a single SpaceX launch, Zuma, as well as the ongoing series of tests of the first completed Falcon Heavy launch vehicle, although the big rocket’s launch date has likely already slipped into February at the earliest. Still, SpaceX’s Falcon 9 workhorse rocket is rearing for additional launches, and options abound.
GovSat-1 (SES-16) – NET late January 2018
First on the docket is the launch of GovSat-1/SES-16, a public-private partnership between Luxembourg’s government and the renowned Lux.-based satellite manufacturer and operator, SES. Similar to Hispasat, GovSat-1 is a geostationary communications satellite weighing around 4000 kg that will be placed in a geostationary transfer orbit by Falcon 9. If it flies before Falcon Heavy, something I’d place at around 99% likely, the launch of PAZ will mark SpaceX’s first reused flight of 2018, with many, many more to come. This particular launch will use Core 1032 from the secretive NROL-76 mission back in May 2017. 1032 is an older booster, and thus a recovery attempt is unlikely – Block 3 Falcon 9s were never designed to be reused more than once or twice, especially not after toasty high-energy recoveries necessitated by geostationary launches.
- After launching NROL-76 in May 2017, B1032 returned to Landing Zone-1 for a successful landing. (SpaceX)
- SES and GovSats’ first partnered satellite, GovSat-1/SES-16. (SES)
PAZ – Starlink prototype co-passengers – NET February 10 2018, 6:52am PST
Up next, PAZ is a commercial imaging satellite designed to return high-resolution photos of Earth from a relatively low polar orbit of approximately 500 km. It’s believed that this mission will be launched aboard a flight-proven Falcon 9 booster, Core 1038, previously tasked with the launch of the small Formosat-5 imaging satellite in August 2017. The mission will be the second 2018 launch of a flight proven booster for SpaceX, following on the heels of GovSat-1. Perhaps more important than reuse (but secondary to the customer’s payload insertion), however, is the probable presence of two of SpaceX’s first prototype broadband satellites, a constellation now known to be called Starlink.
This will be a major achievement for SpaceX’s satellite constellation efforts, as the several hundred employees SpaceX has stationed in Washington State and outside of Hawthorne, CA will finally be able to operationally test the fruit of many months of hard but silent work. Given the presence of two satellites, it’s assumed that these test satellites, Microsat 2A and 2B, have been designed to test all of the main components SpaceX has been developing, particularly the optical (LASER) on orbit communications system. By allowing each satellite to communicate at incredibly high bandwidths with each other, SpaceX’s ultimate goal is to create a mesh network of connectivity covering the entire Earth.
As such, fingers crossed that SpaceX begins to discuss Starlink in more detail as 2018 progresses and PAZ and its Microsat co-passengers reach orbit in February. Sadly, although the combined payload is small and the planned orbit low, the twice-flight-proven booster may meet its ultimate fate in the Pacific Ocean – a recovery attempt is no longer guaranteed for older, reused Falcon 9s. However, while not officially confirmed, this launch could see the debut of SpaceX’s Western landing pad, currently known as SLC-4 West (SLC-4W). Rather than attempting recovery aboard the drone ship Just Read The Instructions, Falcon 9 1038 would instead flip around and return to a landing area less than a kilometer away from its VAFB launch pad. Expect official confirmation as the launch date approaches.
- The Spanish company Hisdesat’s PAZ imaging satellite. (Hisdesat)
- Falcon 9 1038 aboard Just Read The Instructions after the launch of Formosat-5. (SpaceX)
Hispasat 30W-6 (1F) – No Earlier Than (NET) mid-February 2018
Finally, Hispasat is a relatively hefty 6000 kg commercial communications satellite slated for launch aboard what is believed to be a new Falcon 9 rocket. With SpaceX aiming to place the satellite into a geostationary transfer orbit, this will almost certainly preclude any attempts at recovering the first stage – the booster will need to expend most of its fuel to accomplish the job, leaving no reserve to conduct landing burns at sea. Hispasat’s Falcon 9 will thus likely be the first new booster to be expended intentionally by SpaceX in 2018.
Spain's @Hispasat: 30W-6 telecom sat arrives at Cape Canaveral from builder @sslmda to prepare for Feb launch on @SpaceX Falcon 9. Sat carries Ku-, C- & Ka-band payload for Americas/trans-Atlantic. pic.twitter.com/Zfhi1cE5vx
— Peter B. de Selding (@pbdes) January 16, 2018
Another busy year?
If February is to be representative of SpaceX’s 2018 launch cadence, the year is going to be a crazy one for the rocket company. As of IAC 2017, Elon Musk showed an estimated 30 launches as the company’s goal this year, compared to 20 in 2017 (SpaceX was only two launches short of that). While Falcon Heavy may be understandably stealing the buzz and then some from those interested in spaceflight and technology, it is an absolute necessity that SpaceX remains a viable and reliable launch company if they hope to pursue more aspirational technologies like Falcon Heavy, BFR, and more. Here’s to hoping that SpaceX manages to make 2018 equally or even more successful than 2017.
Follow along live as launch photographer Tom Cross and I cover these exciting proceedings as close to live as possible.
Teslarati – Instagram – Twitter
Tom Cross – Instagram
Eric Ralph – Twitter
Elon Musk
Elon Musk explains why Tesla’s 4680 battery breakthrough is a big deal
Tesla confirmed in its Q4 and FY 2025 update letter that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process.
Tesla’s breakthroughs with its 4680 battery cell program mark a significant milestone for the electric vehicle maker. This was, at least, as per Elon Musk in a recent post on social media platform X.
Tesla confirmed in its Q4 and FY 2025 update letter that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process.
Why dry-electrode matters
In a post on X, Elon Musk stated that making the dry-electrode process work at scale was “incredibly difficult,” calling it a major achievement for Tesla’s engineering, production, and supply chain teams, as well as its partner suppliers. He also shared his praise for the Tesla team for overcoming such a difficult task.
“Making the dry electrode process work at scale, which is a major breakthrough in lithium battery production technology, was incredibly difficult. Congratulations to the @Tesla engineering, production and supply chain teams and our strategic partner suppliers for this excellent achievement!” Musk wrote in his post.
Tesla’s official X account expanded on Musk’s remarks, stating that dry-electrode manufacturing “cuts cost, energy use & factory complexity while dramatically increasing scalability.” Bonne Eggleston, Tesla’s Vice President of 4680 batteries, also stated that “Getting dry electrode technology to scale is just the beginning.”
Tesla’s 4680 battery program
Tesla first introduced the dry-electrode concept at Battery Day in 2020, positioning it as a way to eliminate solvent-based electrode drying, shrink factory footprints, and lower capital expenditures. While Tesla has produced 4680 cells for some time, the dry cathode portion of the process proved far more difficult to industrialize than expected.
Together with its confirmation that it is producing 4680 cells in Austin with both electrodes manufactured using the dry process, Tesla has also stated that it has begun producing Model Y vehicles with 4680 battery packs. As per Tesla, this strategy was adopted as a safety layer against trade barriers and tariff risks.
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks,” Tesla wrote in its Q4 and FY 2025 update letter.
News
Even Tesla China is feeling the Optimus V3 fever
As per Tesla China, Optimus V3 is “about to be unveiled.”
Even Tesla China seems to have caught the Optimus V3 fever, with the electric vehicle maker teasing the impending arrival of the humanoid robot on its official Weibo account.
As per Tesla China, Optimus V3 is “about to be unveiled.”
Tesla China hypes up Optimus V3
Tesla China noted on its Weibo post that Optimus V3 is redesigned from first principles and is capable of learning new tasks by observing human behavior. The company has stated that it is targeting annual production capacity of up to one million humanoid robots once manufacturing scales.
During the Q4 and FY 2025 earnings call, CEO Elon Musk stated that Tesla will wind down Model S and Model X production to free up factory space for the pilot production line of Optimus V3.
Musk later noted that Giga Texas should have a significantly larger Optimus line, though that will produce Optimus V4. He also made it a point to set expectations with Optimus’ production ramp, stating that the “normal S curve of manufacturing ramp will be longer for Optimus.”

Tesla China’s potential role
Tesla’s decision to announce the Optimus update on Weibo highlights the importance of the humanoid robot in the company’s global operations. Giga Shanghai is already Tesla’s largest manufacturing hub by volume, and Musk has repeatedly described China’s manufacturers as Tesla’s most legitimate competitors.
While Tesla has not confirmed where Optimus V3 will be produced or deployed first, the scale and efficiency of Gigafactory Shanghai make it a plausible candidate for future humanoid robot manufacturing or in-factory deployment. Musk has also suggested that Optimus could become available for public purchase as early as 2027, as noted in a CNEV Post report.
“It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does,” Musk said during the earnings call.
Elon Musk
Tesla director pay lawsuit sees lawyer fees slashed by $100 million
The ruling leaves the case’s underlying settlement intact while significantly reducing what the plaintiffs’ attorneys will receive.
The Delaware Supreme Court has cut more than $100 million from a legal fee award tied to a shareholder lawsuit challenging compensation paid to Tesla directors between 2017 and 2020.
The ruling leaves the case’s underlying settlement intact while significantly reducing what the plaintiffs’ attorneys will receive.
Delaware Supreme Court trims legal fees
As noted in a Bloomberg Law report, the case targeted pay granted to Tesla directors, including CEO Elon Musk, Oracle founder Larry Ellison, Kimbal Musk, and Rupert Murdoch. The Delaware Chancery Court had awarded $176 million to the plaintiffs. Tesla’s board must also return stock options and forego years worth of pay.
As per Chief Justice Collins J. Seitz Jr. in an opinion for the Delaware Supreme Court’s full five-member panel, however, the decision of the Delaware Chancery Court to award $176 million to a pension fund’s law firm “erred by including in its financial benefit analysis the intrinsic value” of options being returned by Tesla’s board.
The justices then reduced the fee award from $176 million to $70.9 million. “As we measure it, $71 million reflects a reasonable fee for counsel’s efforts and does not result in a windfall,” Chief Justice Seitz wrote.
Other settlement terms still intact
The Supreme Court upheld the settlement itself, which requires Tesla’s board to return stock and options valued at up to $735 million and to forgo three years of additional compensation worth about $184 million.
Tesla argued during oral arguments that a fee award closer to $70 million would be appropriate. Interestingly enough, back in October, Justice Karen L. Valihura noted that the $176 award was $60 million more than the Delaware judiciary’s budget from the previous year. This was quite interesting as the case was “settled midstream.”
The lawsuit was brought by a pension fund on behalf of Tesla shareholders and focused exclusively on director pay during the 2017–2020 period. The case is separate from other high-profile compensation disputes involving Elon Musk.



