

SpaceX
SpaceX’s first Falcon 9 Block 5 booster casualty battered but still intact in aerial photos
Shortly after successfully sending a reused Cargo Dragon spacecraft on its way towards the International Space Station (ISS), SpaceX Falcon 9 Block 5 booster B1050 experienced an anomaly with its grid fins during a planned landing, resulting in a shockingly soft (but unintentional) landing just off the Florida coast.
By some minor miracle, the drastically off-nominal loads experienced by the booster during its unintended departure from controlled flight somehow did not rise to the bar of structural failure. Nevertheless, now floating a handful of miles east of Port Canaveral’s mouth, B1050 did not make it through the ordeal unscathed.
https://twitter.com/_TomCross_/status/1070742919986991107
A little more than 24 hours after the booster found itself floating sideways in the Atlantic Ocean, B1050 had floated a solid ten miles south of its original position into waters and airspace that no longer fell under the purview of Cape Canaveral Air Force Station, technically a military outpost. As the captains of tugboat Eagle and SpaceX support vessel GO Quest discussed the logistics of returning the booster to port with the local harbormaster and US Coast Guard, Teslarati photographer Tom Cross chartered a local helicopter to get a slightly better view of the waterlogged rocket and its ad-hoc recovery operations.
A casualty of war (with the air)
Second only to the fact that the booster appears to be in disproportionately good shape considering the circumstances, by far the most noteworthy feature of the newest addition to SpaceX’s marine fleet is the sheer damage suffered by B1050’s interstage, the black carbon fiber composite structure that topsFalcon 9 Block 5 boosters and hosts its grid fins and stage separation mechanism.
Revealed from an aerial perspective, it almost looks as if one side of the composite cylinder was smashed with a giant hammer, tearing off at least 20% of the entire interstage – including one of four titanium grid fins – while leaving another large segment hanging on by only partially-figurative carbon fiber threads.
- Falcon 9 B1050 is seen here shortly before launch with an intact interstage. (Tom Cross)
- B1050 viewed from Cocoa Beach. (Tom Cross)
- Falcon 9 B1050’s interstage, or what’s left of it. (Tom Cross)
- RIP grid fin. (Tom Cross)
It’s not 100% clear why B1050’s interstage was so readily destroyed but a narrative can certainly be drawn from the current public record. After its grid fins lost hydraulic power and became stuck at an extreme angle, B1050 almost immediately lost control and began rapidly and quite brutally spinning and flailing, tossed around as it hurtled through the air at supersonic speeds. Being a predominately smooth cylinder, Falcon 9’s first stage is inherently prone to rotation in the presence of high-velocity air currents, which is why its grid fins are an absolute necessity for maintaining control authority during in-atmosphere “flights”.
Engines stabilized rocket spin just in time, enabling an intact landing in water! Ships en route to rescue Falcon. pic.twitter.com/O3h8eCgGJ7
— Elon Musk (@elonmusk) December 5, 2018
In a show that will turn the stomach of anyone familiar with a rocket’s typically narrow load tolerances, Falcon 9 B1050 experienced extreme aerodynamic stresses during the worst of its uncontrolled tumble, to the extent that the entire booster and interstage can be seen visibly twisting at least 5 degrees left and right from the perspective of an onboard camera. In the video above, focus on the center of Falcon 9’s grid fins during the first and last 5-10 seconds to properly visualize the extreme forces at play.
It might look fairly innocent to the untrained eye, but keep in mind that Falcon 9’s interstage is no more than a couple of inches thick and is absolutely massive, stretching 3.7m (~12 ft) in diameter. Perhaps even more importantly, the damage to the interstage has almost without a doubt rendered it unusable from the perspective of SpaceX’s established methods of safely moving and manipulating Falcon 9 boosters.
- Technicians attach an older interstage-grabber to lift B1046 after its first recovery. (Tom Cross)
- One of SpaceX’s East Coast interstage jigs is pictured here atop B1049. (Tom Cross)
- A Falcon 9 Block 5 booster bares its interstage and pusher rod, offering a perfect illustration of its scale. (Bloomberg)
All of those methods rely on adapters that attach to the interstage to lift the rocket vertically or support part of its ~30-ton dry mass horizontally. Lacking a sound interstage, it’s now entirely unclear how SpaceX might go about getting B1050 onto land without damaging it further. In simpler terms, this bodes very, very badly for any plans to safely reuse B1050 in the near (or distant) future. After suffering loads that severely weakened and ultimately tore its interstage to pieces, it’s reasonable to assume that the rest of the rocket’s lithium-aluminum propellant tanks experienced stresses that are at least roughly comparable.
If that’s the case, perhaps the only real hope for B1050’s ‘reuse’ will be the recovery of certain subcomponents and miscellaneous parts that may have made it through the ordeal unscathed or with only minor damage. The three remaining titanium grid fins are a guaranteed recovery, while COPVs, cold gas thrusters, avionics boxes, and maybe even some of its nine Merlin 1D engines could be salvageable with some level of refurbishment.
In the meantime, the tentative plan right now is to two B1050 into Port Canaveral sometime after dawn tomorrow, either ending up at drone ship OCISLY’s berth or another less-developed section of the port.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
SpaceX set to launch Axiom’s mission for diabetes research on the ISS
Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.
Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).
The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.
Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.
“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.
Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.
The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.
Elon Musk
EU considers SES to augment Starlink services
The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.
In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.
Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.
“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.
SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.
“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.
Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.
“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.
SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.
News
Amazon launches Kuiper satellites; Can it rival Starlink?
With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.
Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.
Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.
Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.
United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.
Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.
“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”
Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.
Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.
-
News1 week ago
Tesla’s Hollywood Diner is finally getting close to opening
-
Elon Musk2 weeks ago
Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline
-
News5 days ago
Tesla is trying to make a statement with its Q2 delivery numbers
-
Investor's Corner1 week ago
LIVE BLOG: Tesla (TSLA) Q1 2025 Company Update and earnings call
-
Elon Musk2 weeks ago
Tesla reportedly suspended Cybercab and Semi parts order amid tariff war: Reuters
-
SpaceX2 weeks ago
SpaceX pitches subscription model for Trump’s Golden Dome
-
News2 weeks ago
Driverless Teslas using FSD Unsupervised are starting to look common in Giga Texas
-
News3 days ago
NY Democrats are taking aim at Tesla direct sales licenses in New York