Connect with us

News

SpaceX spotted hot-fire testing Falcon 9 Block 5 ahead of its first reflight on August 7

Published

on

Less than three months after SpaceX debuted its upgraded Falcon 9 Block 5 rocket, the company is set for an unexpectedly sudden inaugural reuse of the first highly reliable and reusable rocket to roll off of the Hawthorne, CA assembly line. Falcon 9 booster 1046 (B1046) is now targeting 1:18 AM EDT, August 7 for its second launch.

Confirmed by visual observation of a sooty Block 5 booster vertical on Cape Canaveral’s Pad 40, this reuse will be just two weeks away from beating SpaceX’s booster turnaround record of 72 days.

Advertisement

On the ground to visually confirm plans for the historic reuse, Teslarati photographer Tom Cross also managed to capture an intriguing propellant loading and abort test, where SpaceX appeared to intentionally abort a ‘launch’ attempt after rapidly loading a full complement of liquid oxygen (LOX) and rocket-grade kerosene (RP-1).

While not 100% clear why this testing was done today, an extensive understanding of Falcon 9 Block 5’s behavior during propellant late-load and launch abort scenarios are both critical for the reliable operation of the upgraded rockets and invaluable for the first Crew Dragon launches later this year and early next, the latter with astronauts on board. With humans atop the rocket, a deep understanding of the vehicle’s behavior during a wide range of off-nominal scenarios is more critical than ever, be it required by NASA or simply a side effect of due diligence on behalf of SpaceX.

https://twitter.com/_TomCross_/status/1025074341040533504

A new era of reusable rockets

Regardless, the main focus of this mission is to launch a payload for Indonesian operator PT Telkom Indonesia, in this case a ~5800 kg (12800 lb) geostationary communications satellite known as Merah Putih (formerly Telkom 4). On the SpaceX side of things, this mission is absolutely critical for the company’s future – it will mark the (hopefully) successful inaugural reuse of a Falcon 9 Block 5 booster, the first of many dozens or even hundreds to come over the next several years if SpaceX’s can make good on its aspirations.

Advertisement

While not immensely impressive in the sense that B1046’s refurbishment took ~85 days to Block 4’s record 72-day turnaround, that cursory conclusion is far from accurate. The record turnaround with Block 4 booster B1045 was essentially the culmination of more than a year of experience with nearly a dozen Block 3 and Block 4 Falcon 9 reuses. While that experience definitely transferred in part to SpaceX’s first attempt at reusing Falcon 9 Block 5 (and especially so with the actual design of its reusability-focused upgrades), it’s worth noting that the first reuses of Falcon 9s averaged booster turnaround times of 180-250 days, nearly double or triple the time between Block 5’s first-ever launch and that same booster’s first reflight.

 

Even still, B1046’s debut launch, landing, and refurbishment were wholly unique considering that SpaceX – according to Elon Musk – conducted an extensive “teardown” analysis of the pathfinder rocket after it was transported from the drone ship back to one of the company’s Cape Canaveral refurbishment facilities. It’s very likely the case that that teardown was one of the most extensive SpaceX has done with a recovered rocket, couched on the fact that the company’s future is wholly balanced on Falcon 9 Block 5’s success and ease/efficiency of reusability.

The first Block 5 Falcon 9 lifts off on May 4, 2018. This same booster is set to be reused roughly 13 weeks after its debut, and just completed its second on-pad static fire on August 2nd. (Tom Cross)

That critical teardown process likely took anywhere from 30-60 days, if not simply as long as needed to do it right, after which the rocket was fully reassembled and transported to SpaceX’s Launch Complex 40 (LC-40). Roughly eight days after it arrived at LC-40, B1046 rolled out to the pad’s launch mount, went vertical, and completed a series of tests (including static fire) on Thursday (8/2) afternoon. The static fire was confirmed by a few observers, while Tom Cross captured the first unequivocal proof that the rocket is sooty (and thus B1046).

This moment may seem small on the scale of SpaceX’s many towering achievements, but it will very likely become a fundamental keystone in the future history of affordable access to space.

Advertisement

prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hasn’t adopted Apple CarPlay yet for this shocking reason

Many Apple and iPhone users have wanted the addition, especially to utilize third-party Navigation apps like Waze, which is a popular alternative. Getting apps outside of Tesla’s Navigation to work with its Full Self-Driving suite seems to be a potential issue the company will have to work through as well.

Published

on

Credit: Michał Gapiński/YouTube

Perhaps one of the most requested features for Tesla vehicles by owners is the addition of Apple CarPlay. It sounds like the company wants to bring the popular UI to its cars, but there are a few bottlenecks preventing it from doing so.

The biggest reason why CarPlay has not made its way to Teslas yet might shock you.

According to Bloomberg‘s Mark Gurman, Tesla is still working on bringing CarPlay to its vehicles. There are two primary reasons why Tesla has not done it quite yet: App compatibility issues and, most importantly, there are incredibly low adoption rates of iOS 26.

Tesla’s Apple CarPlay ambitions are not dead, they’re still in the works

Advertisement

iOS 26 is Apple’s most recent software version, which was released back in September 2025. It introduced a major redesign to the overall operating system, especially its aesthetic, with the rollout of “Liquid Glass.”

However, despite the many changes and updates, Apple users have not been too keen on the iOS 26 update, and the low adoption rates have been a major sticking point for Tesla as it looks to develop a potential alternative for its in-house UI.

It was first rumored that Tesla was planning to bring CarPlay out in its cars late last year. Many Apple and iPhone users have wanted the addition, especially to utilize third-party Navigation apps like Waze, which is a popular alternative. Getting apps outside of Tesla’s Navigation to work with its Full Self-Driving suite seems to be a potential issue the company will have to work through as well.

According to the report, Tesla asked Apple to make some changes to improve compatibility between its software and Apple Maps:

Advertisement

“Tesla asked Apple to make engineering changes to Maps to improve compatibility. The iPhone maker agreed and implemented the adjustments in a bug fix update to iOS 26 and the latest version of CarPlay.”

Gurman also said that there were some issues with turn-by-turn guidance from Tesla’s maps app, and it did not properly sync up with Apple Maps during FSD operation. This is something that needs to be resolved before it is rolled out.

There is no listed launch date, nor has there been any coding revealed that would indicate Apple CarPlay is close to being launched within Tesla vehicles.

Advertisement
Continue Reading

Elon Musk

Starlink restrictions are hitting Russian battlefield comms: report

The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.

Published

on

A truckload of Starlink dishes has arrived in Ukraine. (Credit: Mykhailo Fedorov/Twitter)

SpaceX’s decision to disable unauthorized Starlink terminals in Ukraine is now being felt on the battlefield, with Ukrainian commanders reporting that Russian troops have struggled to maintain assault operations without access to the satellite network. 

The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.

Lt. Denis Yaroslavsky, who commands a special reconnaissance unit, stated that Russian assault activity noticeably declined for several days after the shutdown. “For three to four days after the shutdown, they really reduced the assault operations,” Yaroslavsky said.

Russian units had allegedly obtained Starlink terminals through black market channels and mounted them on drones and weapons systems, despite service terms prohibiting offensive military use. Once those terminals were blocked, commanders on the Ukrainian side reported improved battlefield ratios, as noted in a New York Post report.

Advertisement

A Ukrainian unit commander stated that casualty imbalances widened after the cutoff. “On any given day, depending on your scale of analysis, my sector was already achieving 20:1 (casuality rate) before the shutdown, and we are an elite unit. Regular units have no problem going 5:1 or 8:1. With Starlink down, 13:1 (casualty rate) for a regular unit is easy,” the unit commander said.

The restrictions come as Russia faces heavy challenges across multiple fronts. A late January report from the Center for Strategic and International Studies estimated that more than 1.2 million Russian troops have been killed, wounded, or gone missing since February 2022.

The Washington-based Institute for the Study of War also noted that activity from Russia’s Rubikon drone unit declined after Feb. 1, suggesting communications constraints from Starlink’s restrictions may be limiting operations. “I’m sure the Russians have (alternative options), but it takes time to maximize their implementation and this (would take) at least four to six months,” Yaroslavsky noted. 

Continue Reading

Elon Musk

Tesla Korea hiring AI Chip Engineers amid push for high-volume AI chips

Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”

Published

on

Credit: xAI/X

In a recent post on X, Tesla Korea announced that it is hiring AI Chip Design Engineers as part of a project aimed at developing what the company describes as the world’s highest-volume AI chips. CEO Elon Musk later amplified the initiative.

Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”

“This project aims to develop AI chip architecture that will achieve the highest production volume in the world in the future,” Tesla Korea wrote in its post on X.

As per Tesla Korea, those who wish to apply for the AI Chip Design Engineer post should email Ai_Chips@Tesla.com and include “the three most challenging technical problems you have solved.”

Advertisement

Elon Musk echoed the hiring push in a separate post. “If you’re in Korea and want to work on chip design, fabrication or AI software, join Tesla!” he wrote.

The recruitment effort in South Korea comes as Tesla accelerates development of its in-house AI chips, which power its Full Self-Driving (FSD) system, Optimus humanoid robot, and data center training infrastructure.

Tesla has been steadily expanding its silicon development teams globally. In recent months, the company has posted roles in Austin and Palo Alto for silicon module process engineers across lithography, etching, and other chip fabrication disciplines, as noted in a Benzinga report.

Tesla Korea’s hiring efforts align with the company’s long-term goal of designing and producing AI chips at massive scale. Musk has previously stated that Tesla’s future AI chips could become the highest-volume AI processors in the world.

Advertisement

The move also comes amid Tesla’s broader expansion into AI initiatives. The company recently committed about $2 billion into xAI as part of a Series E funding round, reinforcing its focus on artificial intelligence across vehicles, robotics, and compute infrastructure.

Continue Reading