Connect with us

News

SpaceX’s first high-altitude Starship fitted with flaps and rolled to the launch pad

After a several-day delay, SpaceX has successfully installed the first high-altitude Starship prototype at a nearby launch pad. (NASASpaceflight - bocachicagal)

Published

on

After a four-day delay, SpaceX has successfully installed the first high-altitude Starship at its Boca Chica launch pad not long after the rocket was outfitted with large flaps.

Technically the second time a Starship was outfitted with flaps, Starship serial number 8 had the bottom half of its aerodynamic control surfaces installed on September 23rd – exactly one year after Starship Mk1’s flaps were first installed. Starship Mk1’s flaps were likely meant to be functional but SpaceX never appeared to activate them and Mk1’s main body (tank section) was destroyed during a November 2019 pressure test, failing far before the necessary pressures for flight tests. As such, barring a surprise or two, Starship SN8 will very likely become the first flightworthy prototype to have functional flaps installed.

That remains to be seen, though, and will be put to the test over the next few weeks. If all goes according to plan, the ship could become the first to attempt a high-altitude, 15 km (9.3 mile) launch and landing testing, likely also becoming the first Starship to break the sound barrier.

Starship SN8’s first steps toward testing began on September 26th when SpaceX loaded the rocket onto a self-propelled mobile transporter (SPMT) and rolled it to the company’s dedicated Boca Chica launch and test facilities. Shortly after arrival, a crane and load spreader was attached to the rocket to lift it onto one of the pad’s test stands (Stand A). That lift never came and the crane eventually detached and retracted, kicking off what would become an unusual four-day delay.

Advertisement
SN8 arrives at the launch pad. (NASASpaceflight – bocachicagal)

It’s believed that the relatively high winds on the Boca Chica coast were to blame, creating conditions that were too hazardous to risk the precise, hands-on work required to lift and manipulate a ~70 metric ton (~150,000 lb) rocket. While undeniably heavy, an empty Starship’s huge surface area effectively turns it into a giant sail, catching and amplifying wind gusts. Attaching a Starship to a launch mount’s hold-down clamps likely demands millimeter precision, making installation and high winds obviously incompatible (or at least inadvisable).

Finally, around midnight on September 30th, winds died down in Boca Chica and SpaceX fired up a waiting crane and lifted Starship SN8 onto the launch mount. Soon after, technicians began the process of installing the mount’s temporary hydraulic ram – used to mechanically simulate engine thrust – to the rocket’s ‘thrust puck’.

A near-symmetric view of Starship’s belly. (NASASpaceflight – bocachicagal)
Starship SN8 is slowly lowered onto Stand A, outfitted with a hydraulic ram in anticipation of the rocket’s first tests. (NASASpaceflight – bocachicagal)

Like every Starship prototype since Mk1, Starship SN8’s first major challenge will involve passing an acceptance test known as a “cryogenic proof.” After being pressurized with ambient-temperature nitrogen gas to check for leaks, SN8 will be fully filled with liquid nitrogen while the hydraulic ram subjects its thrust puck and engine section to stresses similar to the thrust of three Raptor engines. Together, three Raptors are capable of producing more than 600 metric tons (1.3 million lbf) of thrust. For reference, four Raptors would effectively match the thrust of an entire Falcon 9 booster with all nine Merlin 1Ds at full throttle.

If SN8 reaches the necessary pressure and survives the stress of its cryo proof(s), it will likely become the first Starship to attempt a triple-Raptor static fire – a first for the engine, too. Starship SN8’s first cryo proof attempt is scheduled no earlier than 9pm-6am CDT (UTC-5) on Sunday, October 4th with backup windows on the 5th and 6th. The first static fire attempt – possibly beginning with one Raptor or jumping straight to three – could happen several days after a successful cryo proof.

According to Elon Musk, SpaceX will static fire SN8 twice before attempting its 15 km (~50,000 ft) launch debut. More likely than not, SpaceX will attempt a triple-engine static fire with the Starship as-is, install SN8’s nosecone and forward flaps, and attempt a second static fire while only drawing propellant from tbe rocket’s smaller header tanks (one of which is located in the tip of its nose). Only time (or Elon tweets) will tell.

A view of Starship SN8’s back, aft flaps in their landing position. (NASASpaceflight – bocachicagal)
SN8 prepares to be lifted onto launch mount A. (NASASpaceflight – bocachicagal)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX and xAI tapped by Pentagon for autonomous drone contest

The six-month competition was launched in January and is said to carry a $100 million award.

Published

on

Credit: SpaceX/X

SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News

The six-month competition was launched in January and is said to carry a $100 million award.

Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.

Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.

Advertisement

The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.

The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.

The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.

Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.

Advertisement
Continue Reading

News

Doug DeMuro names Tesla Model S the Most Important Car of the last 30 years

In a recent video, the noted reviewer stated that the choice was “not even a question.”

Published

on

Popular automotive reviewer and YouTuber Doug DeMuro has named the 2012 Tesla Model S as the most important car of the last 30 years.

In a recent video, the noted reviewer stated that the choice was “not even a question,” arguing that the Model S did more to change the trajectory of the auto industry than any other vehicle released since the mid-1990s.

“Unquestionably in my mind, the number one most important car of the last 30 years… it’s not even a question,” DeMuro said. “The 2012 Tesla Model S. There is no doubt that that is the most important car of the last 30 years.”

DeMuro acknowledged that electric vehicle adoption has faced recent headwinds. Still, he maintained that long-term electrification is inevitable.

Advertisement

“If you’re a rational person who’s truthful with yourself, you know that the future is electric… whether it’s 10, 20, 30 years, the future will be electric, and it was the Model S that was the very first car that did that truthfully,” he said.

While earlier EVs like the Nissan Leaf and Chevrolet Volt arrived before the Model S, DeMuro argued that they did not fundamentally shift public perception. The Model S proved that EVs “could be cool, could be fast, could be luxurious, could be for enthusiasts.” It showed that buyers did not have to make major compromises to drive electric.

He also described the Model S as a cultural turning point. Tesla became more than a car company. The brand expanded into Superchargers, home energy products, and a broader tech identity.

DeMuro noted that the Leaf and Volt “made a huge splash and taught us that it was possible.” However, he drew a distinction between being first and bringing a technology into the mainstream.

Advertisement

“It’s rarely about the car that does it first. It’s about the car that brings it into the mainstream,” he said. “The Model S was the car that actually won the game even though the Leaf and Volt scored the first.”

He added that perhaps the Model S’ most surprising achievement was proving that a new American automaker could succeed. For decades, industry observers believed the infrastructure and capital requirements made that nearly impossible.

“For decades, it was generally agreed that there would never be another competitive American car company because the infrastructure and the investment required to start up another American car company as just too challenging… It was just a given basically that you couldn’t do it. And not only did they go it, but they created a cultural icon… That car just truly changed the world,” he said. 

Advertisement
Continue Reading

Elon Musk

Elon Musk doubles down on Tesla Cybercab timeline once again

“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.

Published

on

Credit: @JT59052914/X

CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.

It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.

On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.

Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.

One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.

Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.

However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.

In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.

Elon Musk shares incredible detail about Tesla Cybercab efficiency

On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.

Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.

Continue Reading