Connect with us

News

SpaceX President updates schedule for Starship’s orbital launch debut

Published

on

SpaceX COO and President Gwynne Shotwell says that the company now expects Starbase to be ready for Starship’s first orbital launch attempt as early as June or July, pushing the schedule back another month or two.

To accomplish that feat, SpaceX will need to more or less ace a wide range of challenging and unproven tests and pass a series of exhaustive bureaucratic reviews, significantly increasing the odds that Starship’s orbital launch debut is actually closer to 3-6 months away. While SpaceX could technically pull off a miracle or even attempt to launch hardware that has only been partially tested, even the most optimistic of hypothetical scenarios are still contingent upon things largely outside of the company’s control.

Will FAA or won’t FAA?

Both revolve around the Federal Aviation Administration (FAA), which – in SpaceX’s case – is responsible for completing a ‘programmatic environmental assessment’ (PEA) of orbital Starship launches out of Boca Chica, Texas and issuing a launch license for the largest and most powerful rocket ever built. In some ways, both tasks are unprecedented, but the bureaucratic processes involved are still largely the same as those SpaceX has successfully navigated over the last two decades.

First up, the FAA’s environmental review. Until very recently, the fate of Starbase’s PEA was almost completely indeterminable and could have gone any number of ways – most of which would not be favorable for SpaceX. However, just a few days ago and about a week after the FAA’s latest one-to-two-month PEA delay announcement, the agency updated an online dashboard to show that the fourth of five main PEA processes had been completed successfully. The most important part of the update is the implication that SpaceX and the FAA have now completed almost every aspect of the PEA that requires cooperation with other federal agencies and local stakeholders.

Only one more cooperative process – ensuring “Section 4(f)” compliance – still needs to be completed. Without delving into the details, there is no convincing evidence to suggest that that particular step will be a showstopper, though SpaceX might have to compromise on certain aspects of Starbase operations to complete it. Once Section 4(f) is behind them, the only thing standing between the FAA and SpaceX and a Final PEA is the completion and approval of all relevant paperwork. In other words, for the first time ever, the FAA’s targeted completion date – currently May 31st, 2022 – may actually be achievable.

Advertisement
-->

Still, as the FAA itself loves to repeatedly point out, “the completion of the PEA will not guarantee that the FAA will issue a launch license – SpaceX’s application must also meet FAA safety, risk, and financial responsibility requirements.” Even if the PEA is perfect, SpaceX still has to secure an FAA launch license for the largest and most powerful rocket in history. It’s unclear if SpaceX and the FAA have already begun that painful back-and-forth or if some tedious fine print prevents it from starting before an environmental review is in place. Without knowing more, launch licensing could take anywhere from a few days to several months.

A series of tubes

Without the FAA’s launch license and environmental approval, any Starship SpaceX builds cannot legally launch from Starbase. On the other side of the coin, though, it’s just as true that the FAA’s nods of approval are worth about as much as the paper they’re written on without a rocket that’s ready to launch. In a perfect world, SpaceX would have a Starship and Super Heavy booster fully qualified, stacked, and sitting at Starbase’s orbital launch site when the FAA finally gives a green light. However, that’s not quite what SpaceX’s reality is today.

SpaceX has made a significant amount of progress in the last month and a half, but contrary to CEO Elon Musk’s hopes as of March 21st, the company will absolutely not be ready to attempt an orbital launch by the end of May. Nonetheless, Shotwell’s estimate of “June or July” may not be completely out of reach. Since Musk’s tweet, SpaceX finished assembling Super Heavy Booster 7, rolled the rocket to the launch site on March 31st, and completed several major tests in early April. However, during the last test, an apparent operator error significantly damaged a large part installed inside the booster, forcing SpaceX to return Super Heavy B7 to Starbase’s build site. After two and a half weeks of repairs, Booster 7 returned to the launch site on May 6th and completed another ‘cryoproof’ test, seemingly verifying that those quick repairs did the job.

Had Booster 7 not required repairs, it’s not impossible (but still hard) to imagine that SpaceX could have had a Super Heavy booster ready to launch by the end of May. Still, the static fire testing Booster 7 needs to complete is almost entirely unprecedented and could take months to complete. To date, SpaceX has never ignited more than six Raptors at once on a Starship prototype, while Super Heavy will likely need to complete multiple 33-engine tests before it can be safely considered ready for flight. Worse, there is no guarantee that SpaceX actually wants to fly Booster 7 after the damage it suffered. If Booster 8 carries the torch forward instead, Starship’s orbital launch debut could easily slip to late Q3 or Q4 2022.

Meanwhile, Super Heavy is only half of the rocket. When Musk tweeted his “hopefully May” estimate, SpaceX was nowhere close to finishing the Starship – Ship 24 – that is believed to have been assigned to the orbital launch debut. However, SpaceX finally accelerated Ship 24 assembly within the last few weeks and ultimately finished stacking the upgraded Starship on May 8th. A great deal of work remains to truly complete Ship 24, but SpaceX should be ready to send it to a test stand within a week or two. Even though the testing Ship 24 will need to complete has been done before by Ship 20, making its path forward less risky than Booster 7’s, Ship 24 will debut a number of major design changes and likely needs at least two months of testing to reach a basic level of flight readiness.

Advertisement
-->

Last but not least, there’s the question of the orbital launch site (OLS) itself. Is the launch mount ready to survive a full Super Heavy static fire? Is the pad’s tank farm ready to fill Starship and Super Heavy with several thousand tons of flammable, explosive cryogenic propellant? If it’s a goal of the test flight, is the launch tower ready for a Super Heavy booster to attempt to land in its arms? While there are reasons to believe that the answer to some of those questions is “yes,” plenty of uncertainty remains and plenty of work is still incomplete.

Ultimately, Shotwell’s June goal is almost certainly unachievable. Late July, however, might be within the realm of possibility, but only in the unlikely event that all Booster 7 and Ship 24 testing is completed almost perfectly and without further delay. For the pragmatic reader, August or September is a safer bet. Thankfully, at least one thing is certain: activity at Starbase is about to get significantly more exciting.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading