Connect with us

News

SpaceX President updates schedule for Starship’s orbital launch debut

Published

on

SpaceX COO and President Gwynne Shotwell says that the company now expects Starbase to be ready for Starship’s first orbital launch attempt as early as June or July, pushing the schedule back another month or two.

To accomplish that feat, SpaceX will need to more or less ace a wide range of challenging and unproven tests and pass a series of exhaustive bureaucratic reviews, significantly increasing the odds that Starship’s orbital launch debut is actually closer to 3-6 months away. While SpaceX could technically pull off a miracle or even attempt to launch hardware that has only been partially tested, even the most optimistic of hypothetical scenarios are still contingent upon things largely outside of the company’s control.

Will FAA or won’t FAA?

Both revolve around the Federal Aviation Administration (FAA), which – in SpaceX’s case – is responsible for completing a ‘programmatic environmental assessment’ (PEA) of orbital Starship launches out of Boca Chica, Texas and issuing a launch license for the largest and most powerful rocket ever built. In some ways, both tasks are unprecedented, but the bureaucratic processes involved are still largely the same as those SpaceX has successfully navigated over the last two decades.

First up, the FAA’s environmental review. Until very recently, the fate of Starbase’s PEA was almost completely indeterminable and could have gone any number of ways – most of which would not be favorable for SpaceX. However, just a few days ago and about a week after the FAA’s latest one-to-two-month PEA delay announcement, the agency updated an online dashboard to show that the fourth of five main PEA processes had been completed successfully. The most important part of the update is the implication that SpaceX and the FAA have now completed almost every aspect of the PEA that requires cooperation with other federal agencies and local stakeholders.

Advertisement

Only one more cooperative process – ensuring “Section 4(f)” compliance – still needs to be completed. Without delving into the details, there is no convincing evidence to suggest that that particular step will be a showstopper, though SpaceX might have to compromise on certain aspects of Starbase operations to complete it. Once Section 4(f) is behind them, the only thing standing between the FAA and SpaceX and a Final PEA is the completion and approval of all relevant paperwork. In other words, for the first time ever, the FAA’s targeted completion date – currently May 31st, 2022 – may actually be achievable.

Still, as the FAA itself loves to repeatedly point out, “the completion of the PEA will not guarantee that the FAA will issue a launch license – SpaceX’s application must also meet FAA safety, risk, and financial responsibility requirements.” Even if the PEA is perfect, SpaceX still has to secure an FAA launch license for the largest and most powerful rocket in history. It’s unclear if SpaceX and the FAA have already begun that painful back-and-forth or if some tedious fine print prevents it from starting before an environmental review is in place. Without knowing more, launch licensing could take anywhere from a few days to several months.

A series of tubes

Without the FAA’s launch license and environmental approval, any Starship SpaceX builds cannot legally launch from Starbase. On the other side of the coin, though, it’s just as true that the FAA’s nods of approval are worth about as much as the paper they’re written on without a rocket that’s ready to launch. In a perfect world, SpaceX would have a Starship and Super Heavy booster fully qualified, stacked, and sitting at Starbase’s orbital launch site when the FAA finally gives a green light. However, that’s not quite what SpaceX’s reality is today.

SpaceX has made a significant amount of progress in the last month and a half, but contrary to CEO Elon Musk’s hopes as of March 21st, the company will absolutely not be ready to attempt an orbital launch by the end of May. Nonetheless, Shotwell’s estimate of “June or July” may not be completely out of reach. Since Musk’s tweet, SpaceX finished assembling Super Heavy Booster 7, rolled the rocket to the launch site on March 31st, and completed several major tests in early April. However, during the last test, an apparent operator error significantly damaged a large part installed inside the booster, forcing SpaceX to return Super Heavy B7 to Starbase’s build site. After two and a half weeks of repairs, Booster 7 returned to the launch site on May 6th and completed another ‘cryoproof’ test, seemingly verifying that those quick repairs did the job.

Advertisement

Had Booster 7 not required repairs, it’s not impossible (but still hard) to imagine that SpaceX could have had a Super Heavy booster ready to launch by the end of May. Still, the static fire testing Booster 7 needs to complete is almost entirely unprecedented and could take months to complete. To date, SpaceX has never ignited more than six Raptors at once on a Starship prototype, while Super Heavy will likely need to complete multiple 33-engine tests before it can be safely considered ready for flight. Worse, there is no guarantee that SpaceX actually wants to fly Booster 7 after the damage it suffered. If Booster 8 carries the torch forward instead, Starship’s orbital launch debut could easily slip to late Q3 or Q4 2022.

Meanwhile, Super Heavy is only half of the rocket. When Musk tweeted his “hopefully May” estimate, SpaceX was nowhere close to finishing the Starship – Ship 24 – that is believed to have been assigned to the orbital launch debut. However, SpaceX finally accelerated Ship 24 assembly within the last few weeks and ultimately finished stacking the upgraded Starship on May 8th. A great deal of work remains to truly complete Ship 24, but SpaceX should be ready to send it to a test stand within a week or two. Even though the testing Ship 24 will need to complete has been done before by Ship 20, making its path forward less risky than Booster 7’s, Ship 24 will debut a number of major design changes and likely needs at least two months of testing to reach a basic level of flight readiness.

Last but not least, there’s the question of the orbital launch site (OLS) itself. Is the launch mount ready to survive a full Super Heavy static fire? Is the pad’s tank farm ready to fill Starship and Super Heavy with several thousand tons of flammable, explosive cryogenic propellant? If it’s a goal of the test flight, is the launch tower ready for a Super Heavy booster to attempt to land in its arms? While there are reasons to believe that the answer to some of those questions is “yes,” plenty of uncertainty remains and plenty of work is still incomplete.

Ultimately, Shotwell’s June goal is almost certainly unachievable. Late July, however, might be within the realm of possibility, but only in the unlikely event that all Booster 7 and Ship 24 testing is completed almost perfectly and without further delay. For the pragmatic reader, August or September is a safer bet. Thankfully, at least one thing is certain: activity at Starbase is about to get significantly more exciting.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Continue Reading