Connect with us

News

SpaceX installs new Starship on static fire test stand

Starship 25 is pictured during its first October 2022 rollout. (Starship Gazer)

Published

on

SpaceX may be focused on preparing Starship S24 and Super Heavy Booster 7 for their potentially imminent orbital launch debut, but the rest of the company’s Starship factory isn’t just sitting around.

The laser focus on carefully testing Ship 24 and Booster 7 may have limited the effectiveness of Starbase rocket production, but the factory has continued to produce new ships and boosters. SpaceX has even conducted some limiting testing of a pair of prototypes meant to follow in the footsteps of S24 and B7. In mid-January, that process entered a new and more active phase as SpaceX transported Starship S25 from the factory to the launch pad.

The trip is not Ship 25’s first. Starship S25 first headed to SpaceX’s South Texas launch and test facilities on October 19th, 2022, shortly after the vehicle was fully assembled. Around three weeks of testing followed, and now Ship 25 is back for more.

Starship S25 rolled out for the first time almost three months ago.

Ship 25

The first round of tests was thorough and put Ship 25 through a pneumatic proof test, multiple cryogenic proof tests, and likely a few simulated thrust tests using six hydraulic rams.

“Ship 25 was removed from SpaceX’s other Starship test stand on November 8th, it was rolled back to Starbase’s Starship factory. Ship 25 first rolled to the launch site on October 19th and has since completed four visible tests. On October 28th, Ship 25 survived a pneumatic proof test that showed that its tanks were leak-free and capable of surviving flight pressures (roughly 6-8.5 bar or 90-125 psi). Three cryogenic proof tests followed on November 1st, 2nd, and 7th. The first cryoproof was likely just that – a test that pressurized Ship 25’s tanks and filled them with cryogenic liquid nitrogen (LN2) or a combination of liquid oxygen and LN2.

The next two tests likely took advantage of the customized test stand, which has been semi-permanently outfitted with a set of hydraulic rams that allow SpaceX to simulate the thrust of six Raptor engines while Starship’s structures are chilled to cryogenic temperatures and loaded with roughly 1000 tons (~2.2M lb) of cryogenic fluids. If a Starship can survive those stresses on the ground, the assumption is that it will likely survive similar stresses in flight.”


Teslarati.com – October 20th, 2022

Advertisement
-->

As usual, SpaceX didn’t comment on the development or indicate how that initial proof testing had gone, but Ship 25’s January 14th, 2023 return to the launch site all but guaranteed that that testing had gone more or less according to plan. On January 17th, SpaceX lifted Ship 25 onto Starbase’s only Starship static fire test stand, further confirming that Ship 25 proof testing went to plan.

Soon after its November 2022 return to Starbase’s build site, six Raptor engines were moved into the High Bay and installed on Ship 25. The Starship’s aft was then likely buttoned up with a heat shield before it headed to the test site to begin its static fire test campaign. That campaign could tell us a lot about the status of Starship prototypes. To date, only two Ships have completed full six-Raptor static fire tests, and both took days, weeks, or months to build up to those six-engine milestones with multiple smaller tests. If Ship 25 were to skip those preliminary tests and immediately conduct a six-engine static fire, it would be a sign that SpaceX is significantly more confident in the current Starship design.

Booster 9

Ship 25 is believed to be paired with Super Heavy Booster 9, which recently finished its own round of proof tests. About two months behind Ship 25, Booster 9 rolled out of its Starbase assembly bay and headed to the launch site on December 15th, 2022. The Super Heavy prototype ultimately completed two partial cryogenic proof tests on December 21st and 29th, during which it was likely loaded with around a thousand tons of liquid nitrogen to simulate explosive liquid oxygen and methane propellant. Booster 9 then returned to Starbase’s factory on January 10th, 2023.

Assuming those tests went well, Raptor engine installation could begin at any moment. However, thanks to significant design changes and upgrades present on Booster 9, outfitting and testing this Super Heavy could take longer than usual. Many smaller changes are present, but the most significant by far is the addition of an upgraded version of Raptor. The engine’s combustion-related hardware is likely the same as the Raptor V2 engines present on Booster 7, Ship 24, and Ship 25. But the hardware used to steer each engine – called thrust vector control (TVC) – has been completely changed.

Instead of using a complex web of plumbing and hydraulic power units bolted to the side of Super Heavy, Booster 9’s 13 central Raptors will be electrically steered. That has allowed SpaceX to remove those power units (streamlining Booster 9’s exterior) and reduce the already rats nest of plumbing required to fuel, control, power, and steer dozens of high-performance rocket engines on one booster. SpaceX has been testing electric Raptor TVC for months at its McGregor, Texas development facilities, but it’s unclear if the new technology has progressed to the point that 13 upgraded engines are ready to be installed on Booster 9. In the meantime, SpaceX may install Booster 9’s fixed outer ring of 20 Raptor V2 engines – none of which gimbal or need new electric TVC hardware.

Advertisement
-->

Once all 33 engines are installed, it’s likely that Booster 9 will be thoroughly tested to ensure that all 13 electrically-steered engines work well together before, during, and after numerous static fire tests. SpaceX will also need to verify that the batteries likely powering those new systems function as expected. During the peak stresses they will likely experience, the electric TVC could need to rapidly redirect more than 3000 tons (~6.6 million lbf) of thrust multiple times per second. The peak power required from Super Heavy’s batteries will likely be immense as a result.

For now, the start of Super Heavy B9’s own static fire test campaign could be months away and will have to wait until Starbase’s only orbital launch mount – currently occupied by Booster 7, Ship 24, and Starship’s first orbital launch campaign – is vacated. With that orbital launch debut unlikely to happen before March 2023, Booster 9 has plenty of time to relax inside Starbase’s Wide Bay while Ship 25 begins static fire testing at a separate stand.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Elon Musk says he’s open to powering Apple’s Siri with xAI’s Grok

Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

Elon Musk says he’s willing to help Apple overhaul Siri by integrating xAI’s Grok 4.1, igniting widespread excitement and speculations about a potential collaboration between the two tech giants. 

Siri, one of the first intelligent AI assistants in the market, has become widely outdated and outperformed by rivals over the years.

Musk open to an Apple collaboration

Musk’s willingness to team up with Apple surfaced after an X user suggested replacing Siri with Grok 4.1 to modernize the AI assistant. The original post criticized Siri’s limitations and urged Apple to adopt a more advanced AI system. “It’s time for Apple to team up with xAI and actually fix Siri. Replace that outdated, painfully dumb assistant with Grok 4.1. Siri deserves to be Superintelligent,” the X user wrote.

Musk quoted the post, responding with, “I’m down.” Musk’s comment quickly attracted a lot of attention among X’s users, many of whom noted that a Grok update to Siri would be appreciated because Apple’s AI assistant has legitimately become terrible in recent years. Others also noted that Grok, together with Apple’s potential integration of Starlink connectivity, would make iPhones even more compelling. 

Grok promises major Siri upgrades

The enthusiasm stems largely from Grok 4.1’s technical strengths, which include stronger reasoning and improved creative output. xAI also designed the model to reduce hallucinations, as noted in a Reality Tea report. Supporters believe these improvements could address Apple’s reported challenges developing its own advanced AI systems, giving Siri the upgrade many users have waited years for.

Advertisement
-->

Reactions ranged from humorous to hopeful, with some users joking that Siri would finally “wake up with a personality” if paired with Grok. Siri, after all, was a trailblazer in voice assistants, but it is currently dominated by rivals in terms of features and capabilities. Grok could change that, provided that Apple is willing to collaborate with Elon Musk’s xAI.

Continue Reading

News

Tesla’s top-rated Supercharger Network becomes Stellantis’ new key EV asset

The rollout begins in North America early next year before expanding to Japan and South Korea in 2027.

Published

on

tesla-supercharger-diner
Credit: Tesla

Stellantis will adopt Tesla’s North American Charging System (NACS) across select battery-electric vehicles starting in 2026, giving customers access to more than 28,000 Tesla Superchargers across five countries. 

The rollout begins in North America early next year before expanding to Japan and South Korea in 2027, significantly boosting public fast-charging access for Jeep, Dodge, and other Stellantis brands. The move marks one of Stellantis’ largest infrastructure expansions to date.

Stellantis unlocks NACS access

Beginning in early 2026, Stellantis BEVs, including models like the Jeep Wagoneer S and Dodge Charger Daytona, will gain access to Tesla’s Supercharger network across North America. The integration will extend to Japan and South Korea in 2027, with the 2026 Jeep Recon and additional next-generation BEVs joining the list as compatibility expands. Stellantis stated that details on adapters and network onboarding for current models will be released closer to launch, as noted in a press release.

The company emphasizes that adopting NACS aligns with a broader strategy to give customers greater freedom of choice when charging, especially as infrastructure availability becomes a deciding factor for EV buyers. With access to thousands of high-speed stations, Stellantis aims to reduce range anxiety and improve long-distance travel convenience across its global portfolio.

Tesla Supercharger network proves its value

Stellantis’ move also comes as Tesla’s Supercharger system continues to earn top rankings for reliability and user experience. In the 2025 Zapmap survey, drawn from nearly 4,000 BEV drivers across the UK, Tesla Superchargers were named the Best Large EV Charging Network for the second year in a row. The study measured reliability, ease of use, and payment experience across the country’s public charging landscape.

Advertisement
-->

Tesla’s UK network now includes 1,115 open Supercharger devices at 97 public locations, representing roughly 54% of its total footprint and marking a 40% increase in public availability since late 2024. Zapmap highlighted the Supercharger network’s consistently lower pricing compared to other rapid and ultra-rapid providers, alongside its strong uptime and streamlined user experience. These performance metrics further reinforce the value of Stellantis’ decision to integrate NACS across major markets.

Continue Reading

News

Tesla FSD and Robotaxis are making people aware how bad human drivers are

These observations really show that Tesla’s focus on autonomy would result in safer roads for everyone.

Published

on

Credit: Tesla

Tesla FSD and the Robotaxi network are becoming so good in their self-driving performance, they are starting to highlight just how bad humans really are at driving. 

This could be seen in several observations from the electric vehicle community.

Robotaxis are better than Uber, actually

Tesla’s Robotaxi service is only available in Austin and the Bay Area for now, but those who have used the service have generally been appreciative of its capabilities and performance. Some Robotaxi customers have observed that the service is simply so much more affordable than Uber, and its driving is actually really good.

One veteran Tesla owner, @BLKMDL3, recently noted that the Robotaxi service has become better than Uber simply because FSD now drives better than some human drivers.  Apart from the fact that Robotaxis allow riders to easily sync their phones to the rear display, the vehicles generally provide a significantly more comfortable ride than their manually-driven counterparts from Uber.

FSD is changing the narrative, one ride at a time

It appears that FSD V14 really is something special. The update has received wide acclaim from users since it was released, and the positive reactions are still coming. This was highlighted in a recent post from Tesla owner Travis Nicolette, who shared a recent experience with FSD. As per the Tesla owner, he was quite surprised as his car was able to accomplish a U-turn in a way that exceeded human drivers.

Advertisement
-->

Yet another example of FSD’s smooth and safe driving was showcased in a recent video, which showed a safety monitor of a Bay Area Robotaxi falling asleep in the driver’s seat. In any other car, a driver falling asleep at the wheel could easily result in a grave accident, but thanks to FSD, both the safety monitor and the passengers remained safe.

These observations, if any, really show that Tesla’s focus on autonomy would result in safer roads for everyone. As per the IIHS, there were 40,901 deaths from motor vehicle crashes in the United States in 2023. The NHTSA also estimated that in 2017, 91,000 police-reported crashes involved drowsy drivers. These crashes led to an estimated 50,000 people injured and 800 deaths. FSD could lower all these tragic statistics by a notable margin.

Continue Reading