News
SpaceX’s mystery “Optimus Prime” drone ship robot spotted testing ahead of BulgariaSat-1 mission
Just a little over three months ago, in mid March, fans of SpaceX caught their first full glimpses of a mysterious robot aboard the drone ship Of Course I Still Love You (OCISLY) while it was docked in Port Canaveral, Florida.
Rapidly deemed “Roomba” and later heard to be internally nicknamed “Optimus Prime”, it was approximately 50 feet (15 meters) across at its widest point and appeared to be extremely heavy due to the way it was handled on the side of the docks, as well as the presence of tracks rather than wheels. The SpaceX community quickly came to the conclusion that it was some sort of robotic tool for remotely securing Falcon 9 first stages following landings aboard SpaceX’s drone ship fleet, as first stages had a tendency to rather precariously slide about drone ships in high seas.
- Optimus Prime roving around OCISLY on June 13th. (Brady Kenniston/NASAspaceflight.com)
- Optimus Prime captured by helicopter while conducting tests in March earlier this year. (Source: Reddit /u/riddlerthc)
This speculation was proven correct during a press conference following the successful launch of SES-10 and SpaceX’s first successful reuse; the Roomba/Optimus Prime was indeed a measure to more rapidly and safely secure first stages after landing aboard drone ships. The primary reason for this robot existing is to better ensure the safety of those working aboard active drone ships. Removing the requirement for people to be aboard a barge with an unsecured 50,000 kilogram rocket that has a tendency to explode violently after falling over.

The hallowed remains of the Falcon 9 that successfully launched Jason-3 but was somewhat less successfully recovered. (NASAspaceflight)
It is currently unclear whether the robot is intended to be a precaution only used in high seas or a tool to be used for every autonomous spaceport drone ship recovery. But the fact that it was seen conducting tests aboard OCISLY just a day before SpaceX’s static fire test for the upcoming launch of BulgariaSat-1 indicates that the upcoming launch may be the robot’s first truly operational test. It is also possible that SpaceX may simply choose to recover the stage and bring it back to port before conducting tests with the robot and an actual Falcon 9 S1 aboard OCISLY, with this latter option forcing less reliance upon a currently unproven (but nevertheless rather simple) technology.
Aside from the morally prescient goal of removing safety hazards for the Falcon 9 recovery crew, the ability to remotely secure Falcon 9 first stages will also avoid the time consuming practice of welding the landing legs and hydraulic jacks to the deck of the barge. This will likely remove hours of cautious procedures designed to protect those working aboard the barge once a stage has landed. As previously discussed on Teslarati, the possibility of weekly launches occurring from Cape Canaveral later this winter or sometime in 2018 gives SpaceX significant motivation to increase the availability of OCISLY, its only East coast-based drone ship.

A Falcon 9 S1 secured the old-fashioned way with leg shoes welded to the deck and hydraulic lifts to keep weight off the legs. (NASAspaceflight)
While the several days typically required to sail several hundred miles to the barges’ recovery destinations are not about to change, the ability to remotely secure recovered stages will both drastically improve the safety of the recovery crew and allow OCISLY to spend less time on station in the Atlantic, and thus more time back in port to offload its Falcon 9 payload and prepare for the next recovery.
For SpaceX’s goal of rapid reusability, every day and even every hour that can be removed from the process of launching, recovering, and relaunching is time that could theoretically be spent launching the payloads of paying customers, or launching SpaceX’s own payloads of revenue-producing broadband satellites and data-producing Red Dragons. As the saying goes, time is money.
News
Tesla aims to combat common Full Self-Driving problem with new patent
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
Tesla is aiming to combat a common Full Self-Driving problem with a new patent.
One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.
Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.
Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”
Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.
The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.
Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”
The patent was first spotted by Not a Tesla App.
The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”
Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.
This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.
CEO Elon Musk said during the Q2 Earnings Call:
“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”
Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.
Elon Musk
Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.
The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price.
The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.
Delaware Supreme Court makes a decision
In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”
The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.
A hard-fought victory
As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.
The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.
Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez
News
Tesla Cybercab tests are going on overdrive with production-ready units
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the vehicle being reported across social media this week.
Tesla is ramping its real-world tests of the Cybercab, with multiple sightings of the autonomous two-seater being reported across social media this week. Based on videos of the vehicle that have been shared online, it appears that Cybercab tests are underway across multiple states.
Recent Cybercab sightings
Reports of Cybercab tests have ramped this week, with a vehicle that looked like a production-ready prototype being spotted at Apple’s Visitor Center in California. The vehicle in this sighting was interesting as it was equipped with a steering wheel. The vehicle also featured some changes to the design of its brake lights.
The Cybercab was also filmed testing at the Fremont factory’s test track, which also seemed to involve a vehicle that looked production-ready. This also seemed to be the case for a Cybercab that was spotted in Austin, Texas, which happened to be undergoing real-world tests. Overall, these sightings suggest that Cybercab testing is fully underway, and the vehicle is really moving towards production.
Production design all but finalized?
Recently, a near-production-ready Cybercab was showcased at Tesla’s Santana Row showroom in San Jose. The vehicle was equipped with frameless windows, dual windshield wipers, powered butterfly door struts, an extended front splitter, an updated lightbar, new wheel covers, and a license plate bracket. Interior updates include redesigned dash/door panels, refined seats with center cupholders, updated carpet, and what appeared to be improved legroom.
There seems to be a pretty good chance that the Cybercab’s design has been all but finalized, at least considering Elon Musk’s comments at the 2025 Annual Shareholder Meeting. During the event, Musk confirmed that the vehicle will enter production around April 2026, and its production targets will be quite ambitious.

